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Abstract

In this work, different aspects and applications of the recurrence plot analysis are presented.
First, a comprehensive overview of recurrence plots and their quantification possibilities is
given. New measures of complexity are defined by using geometrical structures of recurrence
plots. These measures are capable to find chaos-chaos transitions in processes. Furthermore,
a bivariate extension to cross recurrence plots is studied. Cross recurrence plots exhibit charac-
teristic structures which can be used for the study of differences between two processes or for
the alignment and search for matching sequences of two data series. The selected applications
of the introduced techniques to various kind of data demonstrate their ability. Analysis of re-
currence plots can be adopted to the specific problem and thus opens a wide field of potential
applications.

Regarding the quantification of recurrence plots, chaos-chaos transitions can be found in
heart rate variability data before the onset of life threatening cardiac arrhythmias. This may
be of importance for the therapy of such cardiac arrhythmias. The quantification of recurrence
plots allows to study transitions in brain during cognitive experiments on the base of single
trials. Traditionally, for the finding of these transitions the averaging of a collection of single
trials is needed.

Using cross recurrence plots, the existence of an El Niño/ Southern Oscillation-like oscilla-
tion is traced in northwestern Argentina 34 000 yrs. ago. In further applications to geological
data, cross recurrence plots are used for time scale alignment of different borehole data and
for dating a geological profile with a reference data set. Additional examples from molecular
biology and speech recognition emphasize the suitability of cross recurrence plots.

Kurzfassung

Diese Arbeit beschäftigt sich mit verschiedenen Aspekten und Anwendungen von Recurrence
Plots. Nach einer Übersicht über Methoden, die auf Recurrence Plots basieren, werden neue
Komplexitätsmaße eingeführt, die geometrische Strukturen in den Recurrence Plots beschreiben.
Diese neuen Maße erlauben die Identifikation von Chaos-Chaos-Übergängen in dynamischen
Prozessen. In einem weiteren Schritt werden Cross Recurrence Plots eingeführt, mit denen zwei
verschiedene Prozesse untersucht werden. Diese bivariate Analyse ermöglicht die Bewertung
von Unterschieden zwischen zwei Prozessen oder das Anpassen der Zeitskalen von zwei Zeitrei-
hen. Diese Technik kann auch genutzt werden, um ähnliche Abschnitte in zwei verschiede-
nen Datenreihen zu finden. Im Anschluß werden diese neuen Entwicklungen auf Daten ver-
schiedener Art angewendet. Methoden, die auf Recurrence Plots basieren, können an die
speziellen Probleme angepaßt werden, so daß viele weitere Anwendungen möglich sind.

Durch die Anwendung der neu eingeführten Komplexitätsmaße können Chaos-Chaos-Über-
gänge in Herzschlagdaten vor dem Auftreten einer lebensbedrohlichen Herzrhythmusstörung
festgestellt werden, was für die Entwicklung neuer Therapien dieser Herzrhythmusstörungen
von Bedeutung sein könnte. In einem weiteren Beispiel, in dem EEG-Daten aus einem kognitiv
orientierten Experiment untersucht werden, ermöglichen diese Komplexitätsmaße das Erken-
nen von spezifischen Reaktionen im Gehirn bereits in Einzeltests. Normalerweise können diese
Reaktionen erst durch die Auswertung von vielen Einzeltests erkannt werden.

Mit der Hilfe von Cross Recurrence Plots wird die Existenz einer klimatischen Zirkulation,
die der heutigen El Niño/ Southern Oscillation sehr ähnlich ist, im Nordwesten Argentiniens
vor etwa 34 000 Jahren nachgewiesen. Außerdem können mit Cross Recurrence Plots die Zeit-
skalen verschiedener Bohrlochdaten aufeinander abgeglichen werden. Diese Methode kann
auch dazu genutzt werden, ein geologisches Profil mit Hilfe eines Referenzprofiles mit bekan-
nter Zeitskala zu datieren. Weitere Beispiele aus den Gebieten der Molekularbiologie und der
Spracherkennung unterstreichen das Potential dieser Methode.
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Chapter 1

Introduction

Mankind has to arrange itself with the phenomena in nature. Scientists ob-
serve various complex processes in nature, e.g. by measuring temperatures,
magnitudes of earthquakes, fluxes of solar radiation, heart rate variability
etc. and try to predict them. Especially since the discussions about greenhouse
effect, global warming and natural hazards the understanding of the relation-
ships in nature have become more important. The investigation of complex
systems in nature and engineering (e.g. turbulence, laser) has revealed that
the underlying nonlinear processes have also to be taken into account in order
to understand and model these systems. In the last decades data analysis us-
ing classical (linear) methods were further improved and enriched with new
methods which were derived from chaos theory. Many analysts have tried to
estimate nonlinear measures and properties e.g. scaling laws or fractal dimen-
sions of natural processes. However, most methods of nonlinear data analysis
(Kantz and Schreiber, 1997) need rather long or stationary data series – both
are not typical features of data series which are gained from nature. Further-
more, it was shown that these methods work very well for appropriate proto-
typical model systems; however, the nature cannot be described in a Laplacian
sense – too many coincidences cover the interrelations, which e.g. overwhelm
the estimation of the dimension of natural processes. Thus, the results of data
analysis should be considered with a healthy portion of scepticism. This fact
challenges to develop new techniques of nonlinear data analysis.

In the last decade a new method based on nonlinear data analysis has be-
come popular: recurrence plots (Eckmann et al., 1987). Recurrence is a fun-
damental property of dissipative dynamical systems. Although small dis-
turbations of such a system cause exponentially divergence of its state, after
some time the system will come back to a state that is arbitrary close to a for-
mer state and pass through a similar evolution. Recurrence plots visualize
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such recurrent behaviour of dynamical systems. Although they are not com-
pletely understood, practitioners of this method claim its relevance for short
and nonstationary data. These features are indeed the crucial advantage of re-
currence plots. Zbilut and Webber Jr. (1992) have made an important further
step by introducing a quantification analysis based on recurrence plots, which
became well known in the analysis especially of physiological data. Hundreds
of works and publications using this quantification analysis can be found in
literature. It seems that the reason for this amazing growth in the popularity
of recurrence plots is not only the technical aspect. Recurrence plots can be
very decorative and attract attention.

In this PhD thesis I will present new extensions of recurrence plots and
some applications especially in geology and physiology. A methodical over-
view over recurrence plots and cross recurrence plots will be given in the sec-
ond chapter. The classical quantification analysis will be extended by intro-
ducing new measures of complexity, which can be also used to find chaos-
chaos transitions. Then the concept of cross recurrence plots will be intro-
duced, which allows to find similar epochs in different systems. The third
chapter is assigned to the applications. In the first part, the new recurrence
plot based measures will be used to study physiological data. Analysis of
heart rate variability data will reveal early signs of life threatening cardiac ar-
rhythmias. Regarding event related physiological data (brain potentials), the
introduced measures will allow to study characteristic processes in the brain
during unexpected stimulation even using single trials. Then, cross recur-
rence plots will be applied to geological data. Application to data of modern
and past climate will give indications for the existence of the El Niño phe-
nomenon in the past. Other applications will present the usage of cross recur-
rence plots in the geological context for time scale alignment of borehole data
and for dating geological profiles. Finally, cross recurrence plots will be ap-
plied to further data from molecular biology and speech recognition in order
to present its ability for the search of matching sequences. In the appendix
my publications which were published or submitted during my PhD are com-
piled. Moreover, a comprehensive bibliography of publications regarding to
recurrence plots and our Matlab toolbox developed for application of recur-
rence and cross recurrence plots are provided through the WorldWideWeb
(http://tocsy.agnld.uni-potsdam.de).
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Chapter 2

Data Analysis Basing on
Recurrence Plots

The analysis of phase space trajectories is a basic concept of nonlinear data
analysis. This chapter begins with an introduction of the concept of phase
space reconstruction. Then, a technical and historical review on recurrence
plots is given and the new quantification techniques are presented. This part
is followed by the generalization to cross recurrence plots with their potentials
for application. Finally, rather promising current developments of recurrence
plots will be briefly mentioned.

2.1 Phase Space Trajectories

The states of systems in nature or engineering typically change in time. The
investigation of these mostly complex processes is an important task in numer-
ous scientific disciplines that helps to understand and describe these changes
(e.g. for forecasts). The aim is usually to find mathematical models which can
be adapted to the real processes and used for solving the given problems. The
measuring of a state (which leads to observations of the state but not to the
state itself) and subsequent data analysis are the first steps toward the under-
standing of a process. Well known and approved methods for data analysis are
those based on linear concepts as estimations of moments, correlations, power
spectra or principle components analyses etc. In the last two decades this zoo
of analysis methods has been enriched with methods of the theory of nonlin-
ear dynamics. Some of these new methods base on a metric or topological
analysis of the phase space of the underlying dynamics or on an appropriate
reconstruction of it (Kantz and Schreiber, 1997; Takens, 1981). This section will
focus on the reconstruction of a phase space.
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The state of a system can be described by its state variables

x1(t), x2(t), . . . , xd(t), (2.1)

for example the both state variables temperature and pressure for a thermo-
dynamic system. Note that the superscript number is used here as an index of
the component and not as an exponent. The d state variables at time t form a
vector ~x(t) in a d-dimensional space which is called phase space. This vector
moves in time and in the direction that is specified by its velocity vector

~̇x(t) = ∂t~x(t) = ~F(x). (2.2)

The temporary succession of the phase space vectors forms a trajectory (phase
space trajectory, orbit). The velocity field ~F(x) is tangent to this trajectory. For
autonomous systems the trajectory must not cross itself. The time evolution
of the trajectory explains the dynamics of the system, i. e. the attractor of the
system. If ~F(x) is known, the state at a given time can be determined by in-
tegrating the equation system (2.2). However, a graphical visualization of the
trajectory enables the determination of a state without integrating the equa-
tions. The shape of the trajectory gives hints about the system; periodic or
chaotic systems have characteristic phase space portraits.

The observation of a real process usually does not yield all possible state
variables. Either not all state variables are known or not all of them can be
measured. Most often only one observation u(t) is available. Since measure-
ments result in discrete time series, the observations will be written in the fol-
lowing as ui, where t = i ∆t and ∆t is the sampling rate of the measurement.
The sampling rate may be constant, resulting in a time series with equidistant
sampling points. However, a constant sampling rate is not always available,
which often leads to problems in applying standard methods of data analysis,
because they require equidistant time series. In general, variables with a sub-
scribed index are in this work time discrete (e.g. ~xi, Ri, j), whereas a braced t
denotes continuous variables (e.g. ~x(t), R(t1, t2)).

Couplings between the system’s components imply that each single com-
ponent contains essential information about the dynamics of the whole sys-
tem. Therefore, an equivalent phase space trajectory, which preserves the topo-
logical structures of the original phase space trajectory, can be reconstructed
by using only one observation or time series, respectively (Packard et al., 1980;
Takens, 1981). A method frequently used for reconstructing such a trajectory
~̂x(t) is the time delay method: ~̂xi = (ui, ui+τ , . . . , ui+(m−1)τ)T, where m is the
embedding dimension and τ is the time delay (index based; the real time delay
is τ ∆t). The preservation of the topological structures of the original trajectory
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is guaranteed if m ≥ 2d + 1, where d is the dimension of the attractor (Takens,
1981).

Both embedding parameters, the dimension m and the delay τ , have to
be chosen appropriately. Different approaches are applicable for the determi-
nation of the smallest sufficient embedding dimension (Cao, 1997; Kantz and
Schreiber, 1997):

1. The first approach may be the computation of some invariant measure on
the reconstructed attractor, which will change if the current embedding
dimension is too small, but which will persist if it is large enough. This
method, however, is rather subjective and usually requires lengthy data
sets.

2. The investigation of the changes in the neighbourhood of phase space
points under changes of the embedding dimension may be applied. In-
appropriate embedding dimensions cause an increasing amount of false
nearest neighbours.

3. The single value decomposition of an initial set of reconstructed phase
space vectors reveals the smallest number of uncorrelated directions in
the phase space, which can be used as an embedding dimension.

At this point, we will only focus on methods which use false nearest neigh-
bours.

There are various methods that use false nearest neighbours in order to de-
termine the embedding dimension. The basic idea is that by decreasing the di-
mension an increasing amount of phase space points will be projected into the
neighbourhood of any phase space point, even if they are not real neighbours
(Fig. 2.1). Such points are called false nearest neighbours (FNNs). The simplest
method uses the amount of these FNNs as a function of the embedding dimen-
sion in order to find the minimal embedding dimension (Kantz and Schreiber,
1997). Such a dimension has to be taken where the FNNs vanish. Other meth-
ods use the ratios of the distances between the same neighbouring points for
different dimensions (Kennel et al., 1992; Cao, 1997).

There are further methods for the determination of attractor dimensions,
e.g. the correlation sum (Grassberger and Procaccia, 1983).

Random errors and low measurement precision can lead to a linear depen-
dence between the subsequent vectors ~xi. Hence, the delay has to be chosen in
such a way that such dependences vanishes. One possible means of determin-
ing the delay is by using the autocovariance function C(τ) = 〈ui ui−τ〉 (using the
assumption 〈ui〉 = 0).
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Figure 2.1: Decreasing the embedding dimension causes an increase of false
nearest neighbours (small circles) which fall into the neighbourhood (the cir-
cle or the sliced ball) of a phase space point (the cross); the real nearest neigh-
bours are the larger black dots; (A) m = 1, (B) m = 2 and (C) m = 3. The
neighbourhood in (C) seems to be smaller than in the other two plots, but this
is the result of downscaling.

A delay may be appropriate when the autocovariance approaches zero.
This minimizes the linear correlation between the components but does not
have to mean they are independent. However, the converse is true: if two vari-
ables are independent they will be uncorrelated. Therefore, another well es-
tablished possibility for determining the delay is the mutual information (Fraser
and Swinney, 1986)

I(τ) = − ∑
ϕ, ψ

pϕ, ψ(τ) log
pϕ, ψ(τ)
pϕ pψ

=
〈

log
pui , ui+τ

pui pui+τ

〉
. (2.3)

Here pϕ, ψ(τ) is the joint probability that ui = ϕ and ui+τ = ψ. pϕ and pψ

are the probabilities that ui has the value ϕ and ψ, respectively. In order to
simplify the notations, we use pui = pϕ, pui+τ

= pψ and pui , ui+τ
= pϕ, ψ(τ).

The mutual information is not a function of the variables ϕ and ψ but of the
joint probability pϕ, ψ(τ). It is the average of the information about a value
after a delay τ , which can be yielded from the knowledge of the current value.
The best choice for the delay is where I(τ) has its smallest local minimum. The
advantage of the mutual information vs. the autocovariance function is that it
finds the nonlinear interrelations and, hence, determines such a delay which
fulfils the criterion of independence.

Some further methods for the reconstruction of the attractor should also be
mentioned. Broomhead and King (1986) have suggested the method of singu-
lar value decomposition (SVD). First, a set X = (~x1, ~x2, . . . , ~xN) of embedding
vectors for a sufficient large dimension m and with a delay of τ = 1 is formed
(note that τ = 1 means that the real delay corresponds to the time resolution of
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the data). Then, the eigenvalues and eigenvectors from the covariance matrix

C =
1
N

XTX

are computed. The amount of non-zero eigenvalues (rank of C) is the value
of the smallest sufficient embedding dimension, and the corresponding eigen-
vectors are the components of the searched phase space reconstruction. The
advantage is that it is not necessary to determine a delay. However, the SVD
minimizes only the linear correlation between the components, which – as
mentioned above – does not mean independence in general (vanishing linear
correlation corresponds to independence only for Gaussian distributed data).
An alternative way for such decomposition is the independent component anal-
ysis (ICA) (Hyvärinen et al., 2001). This decomposition method separates the
signals in nonlinearly uncorrelated (i. e. independent) components, avoiding
the disadvantage of the SVD whereby the components are still dependent. Al-
though this approach cannot be found in any publication, the development of
an embedding method based on ICA seems promising.

Another alternative for a phase space reconstruction is based on mutual
information. Fraser (1989) has generalized the mutual information (2.3) for
higher dimensional joint distributions pui , ui+τ , ..., ui+(m−1)τ (definition correspond-
ing to (2.3)) by definition of the redundancy

Rm(τ) =

〈
log

pui , ui+τ , ..., ui+(m−1)τ

pui pui+τ
· · · pui+(m−1)τ

〉
(2.4)

and the marginal redundancy

R̃m(τ) = Rm+1(τ)− Rm(τ). (2.5)

First, a dimension m must be chosen, which maximizes R̃m(τ). Then, the de-
lay τ should be selected to maximize the information about the original phase
space that is provided by the reconstructed phase space vectors. This informa-
tion can be estimated with a further measure defined by Fraser (1989). Fraser
has compared his method to that based on SVD and has found that the re-
dundancy approach revealed better reconstructions. This method maximizes
the “number of distinguishable predictions about the state” while the method
based on SVD minimizes only the linear correlation.

For the reconstruction of low-dimensional phase spaces the differential phase
space embedding is suitable, for example ~̂xi = (ui, ∂t(ui), ∂2

t (ui))T, where the
partial derivatives ∂t can be estimated from the differences of the successive
values ui (Mindlin and Gilmore, 1992). The advantage is that the topological
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properties of the attractor (e. g. relative rotation, linking properties) can be de-
termined from this embedding. In addition to it the components of this phase
space are natural variables which are used to model the dynamics.

Especially for the application of recurrence plots, Zbilut et al. (2002) sug-
gest a heuristic approach for the determination of the embedding dimension.
First create a recurrence plot (RP) with a high embedding dimension (m =
20 . . . 25). Then decrease progressively the dimension until a significant change
in the RP results. Since this change is due to a topological change of the phase
space trajectory caused by the occurrence of FNNs, the current dimension plus
a few dimensions should be sufficient for the embedding. This procedure is
analogous to the statement of Atay and Altıntaş (1999) that such an embed-
ding would be sufficient, where the RP is cleaned from single points and lin-
ear structures dominate. However, this criterion has to be considered with the
utmost caution because with a high embedding dimension (m = 10 would be
enough) it is possible to create an RP with a large amount of diagonal lines
from random data (e. g. Gaussian noise). In an early work, Zbilut and Webber
Jr. (1992) have tried to use a quantification of RPs in order to find the optimal
embedding parameters. However, this approach fails in the case of nonsta-
tionarity (Trulla et al., 1996; Marwan, 1999).

A phase space reconstruction can be used in order to estimate characteristic
properties of the dynamical system. For reviews on corresponding methods
see for example Eckmann and Ruelle (1985), Abarbanel et al. (1993) or Ott
(1993). Besides, the phase space reconstruction is the starting point for the
construction of a recurrence plot.

2.2 Recurrence Plots

In this section an overview about recurrence plots, recurrence quantification
analysis and their history will be given.

2.2.1 Review of Recurrence Plots

Natural processes can have a distinct recurrent behaviour, e.g. periodicities (as
seasonal or Milanković cycles), but also irregular cyclicities (as El Niño South-
ern Oscillation). Moreover, the recurrence of states, in the meaning that states
are arbitrary close after some time, is a fundamental property of determinis-
tic dynamical systems and is typical for nonlinear or chaotic systems (e.g. Ott,
1993; Argyris et al., 1994). The recurrence of states in nature has been known
for a long time and has also been discussed in early publications (e.g. recur-
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Figure 2.2: (A) Segment of the phase space trajectory of the Lorenz system
(for standard parameters r = 28, σ = 10, b = 8

3 ; Lorenz, 1963) by using its
three components and (B) its corresponding recurrence plot. A point of the
trajectory at j which falls into the neighbourhood (gray circle in (A)) of a given
point at i is considered as a recurrence point (black point on the trajectory in
(A)). This is marked with a black point in the RP at the location (i, j). A point
outside the neighbourhood (small circle in (A)) causes a white point in the RP.
The radius of the neighbourhood for the RP is ε = 5.

rence phenomena in cosmic-ray intensity, Monk and Compton, 1939).
Eckmann et al. (1987) have introduced a tool which can visualize the re-

currence of states ~xi in a phase space. Usually, a phase space does not have
a dimension (two or three) which allows it to be pictured. Higher dimen-
sional phase spaces can only be visualized by projection into the two or three
dimensional sub-spaces. However, Eckmann’s tool enables us to investigate
the m-dimensional phase space trajectory through a two-dimensional repre-
sentation of its recurrences (Fig. 2.2). Such recurrence of a state at time i at
a different time j is pictured within a two-dimensional squared matrix with
black and white dots, where black dots mark a recurrence, and both axes are
time axes. This representation is called recurrence plot (RP). Such an RP can be
mathematically expressed as

Rm,εi
i, j = Θ

(
εi −

∥∥~xi −~xj
∥∥)

, ~xi ∈ Rm, i, j = 1 . . . N, (2.6)

where N is the number of considered states xi; εi is a threshold distance, ‖ · ‖
a norm and Θ(·) the Heaviside function.

Since Ri,i = 1 (i = 1 . . . N) by definition, the RP has a black main diagonal
line, the line of identity (LOI), with an angle of π/4. It has to be noted that a sin-
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gle recurrence point at (i, j) does not contain any information about the current
states at the times i and j. However, from the totality of all recurrence points
it is possible to reconstruct the properties of the data. McGuire et al. (1997)
have shown the preservation of the dynamical properties for the distance ma-
trix (2.11). However, the phase space trajectory can also be reconstructed from
the binary RP, where the information about the absolute length of the phase
space vectors is lost. The RP provides information for reordering the indices
of the phase space vectors so that the vectors are sorted by their norm. If the
cumulative distribution of the lengths of the phase space vectors is known,
the restored phase space trajectory will recover its amplitude by equating the
sorted indices with this distribution (Thiel, 2003).

In practice it is not useful and largely impossible to find complete recur-
rences in the sense ~xi ≡ ~xj (e. g. the state of a chaotic system would not re-
cur exactly to the initial state but approaches the initial state arbitrarily close).
Therefore, a recurrence is defined as a state ~xj is sufficiently close to ~xi. This
means that those states~xj that fall into an m-dimensional neighbourhood (e.g. a
ball for the L2-norm or a box for the L∞-norm) with a radius εi centered at ~xi

are recurrent. These ~xj are called recurrence points. In (2.6), this is simply ex-
pressed by the Heaviside function and its argument εi.

In the original definition of the RPs, the neighbourhood is a ball (i. e. L2-
norm is used) and its radius is chosen in such a way that it contains a fixed
amount of states ~xj (Eckmann et al., 1987). With such a neighbourhood, the
radius εi changes for each ~xi (i = 1 . . . N) and Ri, j 6= R j,i because the neigh-
bourhood of ~xi does not have to be the same as that of ~xj. This property leads
to an asymmetric RP, but all columns of the RP have the same recurrence den-
sity (Fig. 2.5D). Using this neighbourhood criterion we will use the parameter
ε for the predefinition of the recurrence density. This means that with a given
ε = 0.15 the real, locally chosenεi is adjusted in such a way that the neighbour-
hood covers 15% of all phase space vectors, and thus the recurrence density is
0.15. We denote this neighbourhood as fixed amount of nearest neighbours (FAN).
However, the most commonly used neighbourhood is that with a fixed radius
εi = ε, ∀i. For RPs this neighbourhood was firstly used by Zbilut et al. (1991).
A fixed radius means that Ri, j = R j,i resulting in a symmetric RP. The type of
neighbourhood that should be used depends on the application. Especially in
applications of the later introduced cross recurrence plots, the neighbourhood
with a FAN will play an important role.

In order to compute an RP, a norm has to be chosen. The most known
norms are the L1-norm, the L2-norm (Euclidean norm) and the L∞-norm (Max-
imum or Supremum norm). The neighbourhoods of these norms have differ-
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A B C

Figure 2.3: Three commonly used norms for the neighbourhood with the same
radius around a point (black dot) exemplarily shown for the two-dimensional
phase space: (A) L1-norm, (B) L2-norm and (C) L∞-norm.

ent shapes (Fig. 2.3). Considering a fixed ε, the L∞-norm finds the most, the
L1-norm the fewest and the L2-norm an intermediate amount of neighbours.
For computing the RPs, the L∞-norm is most commonly applied (Fig. 2.5A),
because it is independent of the phase space dimension and easier to compute
than any other norm. The independence from the dimension will become rel-
evant if in the same analysis different embeddings of a time series have to be
used. Since other norms depend on the dimension, RPs of different embedding
dimensions cannot be compared without a rescaling. But such rescaling is not
necessary for the maximum norm, and the RPs of different embeddings can
be compared directly. Finally, this norm allows to study the RPs theoretically,
because the analytical expressions can be solved in a much simpler way than
those gained by using other norms (Faure and Korn, 1998; Thiel et al., 2002).
The application of the L1-norm has been presented in the publication by Zbilut
et al. (1991). The authors mentioned that by using this norm “an increase in
recurrences becomes more robust in its significance” (Fig. 2.5B).

Special attention has to be turned to the choice of the threshold ε. It is
desirable that the smallest threshold possible is chosen. However, the influ-
ence of noise can necessitate a larger threshold, because noise would distort
any existing structure in the RP. Higher threshold may preserve these struc-
tures. Suggestions from literature show that this threshold should be a few
per cent of the maximum phase space diameter (Mindlin and Gilmore, 1992)
and should not exceed 10% of the mean or the maximum phase space diam-
eter (Zbilut and Webber Jr., 1992; Koebbe and Mayer-Kress, 1992). Using the
recurrence point density of the RP, the threshold can be chosen from the anal-
ysis of this measure in respect to a changing threshold (Zbilut et al., 2002). The
threshold can then be found by looking for a scaling region in the recurrence
point density. However, this may not work for nonstationary data. For this
case Zbilut et al. (2002) have suggested to choose ε so that the recurrence point
density is approximately 1%. For noisy periodic processes, Matassini et al.
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Figure 2.4: Correlation between the recurrence point at (15, 30) and the other
recurrence points in an RP of realizations of the AR(1) process xi+1 = 0.6 xi +
0.3ξ . The embedding parameters are (A) m = 3, τ = 2, ε = 0.3, (B) m = 3,
τ = 5, ε = 0.35 and (C) m = 5, τ = 2, ε = 0.5, which preserve an ap-
proximately constant recurrence rate (0.2). The delay τ = 2 corresponds to
the correlation time of xi (when its ACF falls below 1/e). The redundancy
increases with rising embedding dimension. The correlation coefficients are
gained from 1 000 realizations of the underlying process.

(2002) have suggested to use the diagonal structures within the RP in order to
determine an optimal threshold. Their criterion minimizes the fragmentation
and thickness of the diagonal lines in respect to the threshold. Recent studies
about RPs in our group have revealed a more exact criterion for choosing this
threshold. This criterion takes into account that a measurement of a process
is a composition of the real signal and some observational noise with stan-
dard deviation. In order to get similar results by using RPs, a threshold has
to be chosen which is five times larger than the standard deviation of the ob-
servational noise (Thiel et al., 2002). This criterion holds for a wide class of
processes.

Since the RP is a representation of multiple tests, it is obvious that an RP
contains an amount of redundancy. This redundancy increases when the em-
bedding dimension increases (Fig. 2.4). This effect can yield distinct diagonal
oriented structures in an RP of a time series of uncorrelated values if the em-
bedding is high, although such diagonal structures are expected only for cor-
relation. The increase of the embedding dimension always cleans up the RP
from single recurrence points (representatives for the uncorrelated states) and
emphasizes the diagonal structures as diagonal lines (representatives for the
correlated states). Therefore, if embedding is used, this effect has to be taken
into account. The embedding has to be chosen so that the dynamics of the sys-
tem will be well presented by its phase space trajectory. An overembedding
has to be avoided because a large amount of diagonal lines may be considered
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as artifacts.
Some authors exclude the LOI from the RP. This may be useful for the quan-

tification of RPs, which we will discuss later. It can also be motivated by the
definition of the Grassberger-Procaccia correlation sum (Grassberger and Pro-
caccia, 1983) which was introduced for the determination of the correlation
dimension D2 and is closely related to RPs:

Cm,ε =
1

N2

N

∑
i, j=1
i 6= j

Θ
(
ε − ∥∥~xi −~xj

∥∥)
. (2.7)

The correlation integral excludes the tests of ~xi with itself. Nevertheless, since
the threshold value ε is finite (and normally about 10% of the mean phase
space radius), further long diagonal lines can occur directly below and above
the LOI for smooth or high resolution data. Therefore, the diagonal lines in a
small corridor around the LOI correspond to the tangential motion of the phase
space trajectory, but not to different orbits. Thus, for the estimation of invari-
ants it is better to exclude this entire predefined corridor and not only the LOI.
This step corresponds with suggestions to exclude the tangential motion as
it is done for the computation of the correlation dimension (known as Theiler
correction or Theiler window; Theiler, 1986) or for the alternative estimators of
Lyapunov exponents (Gao and Zheng, 1994) in which only those phase space
points are considered that fulfil the constraint | j − i| ≥ w. Theiler (1986) has
suggested using the autocorrelation time as an appropriate value for w, and
Gao and Zheng (1994) state that w = (m − 1)τ would be a sufficient approach.
However, in a representation of an RP it is better to keep the LOI. Later, this
LOI will gain more importance when extensions of the recurrence plot strate-
gies will be discussed.

In the literature further variations of the recurrence plots can be found:

• Iwanski and Bradley (1998) have defined a variation of an RP with a
corridor threshold [εin,εout] (Fig. 2.5E),

Rm, [εin ,εout]
i, j = Θ

(∥∥~xi −~xj
∥∥ −εin

) · Θ (
εout −

∥∥~xi −~xj
∥∥)

. (2.8)

Those points ~xj are considered to be recurrent that fall into the shell with
the inner radius εin and the outer radius εout. The authors have sug-
gested to use this kind of RPs in order to study “interesting structures”
in the RP. An advantage of such a corridor thresholded recurrence plot is its
increased robustness against recurrence points coming from the tangen-
tial motion. However, the threshold corridor removes the inner points
in broad diagonal lines, which results in two lines instead of one. These
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RPs are, therefore, not suitable for a quantification analysis. The usage
of a shell as a neighbourhood can be found in an algorithm for comput-
ing Lyapunov exponents from experimental time series (Eckmann et al.,
1986).

• Choi et al. (1999) have introduced the perpendicular recurrence plot (Fig. 2.5F)

Rm,ε
i, j = Θ

(
ε − ∥∥~xi −~xj

∥∥) · δ (
~xi ·(~xi −~xj)

)
. (2.9)

Here, δ is the Delta function. This recurrence plot contains only those
points ~xj that fall into the neigbourhood of ~xi and lie in the (m − 1)-
dimensional subspace of Rm that is perpendicular to the phasespace tra-
jectory at ~xi. These points correspond locally to those lying on a Poincaré
section. This criterion cleans up the RP more from recurrence points
based on the tangential motion than the previous corridor thresholded
RPs. The authors have shown the increased efficiency of the perpendic-
ular RPs for their application on estimation of the largest Lyapunov ex-
ponent. Using this kind of an RP, the finding of unstable periodic orbits
(if they exist) is more robust.

• The RP contains, finally, tests of all states with each other, which results
in N2 tests for N considered states. Still, it is also possible to test each
state with a predefined amount k of subsequent states (Zbilut et al., 1991;
Koebbe and Mayer-Kress, 1992; Atay and Altıntaş, 1999)

Rm,ε
i, j = Θ

(
ε − ∥∥~xi −~xi+i0+ j−1

∥∥)
, i = 1 . . . N − k, j = 1 . . . k. (2.10)

This reveals an (N − k) × k-matrix which does not have to be square
(Fig. 2.5H). The y-axis represents the time distances to the following re-
currence points but not their absolute time. All diagonal oriented struc-
tures in the common RP are now projected to the horizontal orientation.
For i0 = 0, the LOI, which was the diagonal line in the common RP, is
now the horizontal line on the x-axis. With non-zero i0 the RP contains
recurrences of a certain state only in the predefined time interval after
time i0 (Koebbe and Mayer-Kress, 1992).

This representation of recurrences may be more intuitive than the RPs
usually are because the consecutive states are not oriented diagonally.
However, such an RP represents only the first (N − k) states. Mindlin
and Gilmore (1992) have proposed the close returns plot which is, in fact,
such an RP exactly for one dimension. Using this kind of RP, a first quan-
tification approach of RPs (or “close returns plots”) can be found (“close
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returns histogram”, recurrence times). It has been used for the investi-
gation of periodic orbits and topological properties of strange attractors
(Lathrop and Kostelich, 1989; Tufillaro et al., 1990; Mindlin and Gilmore,
1992).

• Instead plotting the recurrences with black points, the distances

Dm
i, j = ‖~xi −~xj‖ (2.11)

between the states ~xi and ~xj can be plotted (Fig. 2.5G). Although this
is not a real recurrence plot, it is sometimes called global recurrence plot
(Webber Jr., 2003) or unthresholded recurrence plot (Iwanski and Bradley,
1998). However, it should be termed distance plot. This representation
can also help in studying phase space trajectory. Moreover, it may help
to find an appropriate threshold value ε.

• The windowed and meta recurrence plots have been suggested as means of
investigating an external force or the nonstationarity in a system (Manuca
and Savit, 1996; Casdagli, 1997). The first ones are obtained by covering
an RP with w × w-sized squares (windows) and by averaging the recur-
rence points that are contained in these windows (Casdagli, 1997). Con-
sequently, a windowed recurrence plot is an Nw × Nw-matrix, where Nw

is the floor-rounded N/w, and consists of values which are not limited
to zero and one (this suggests a colour-encoded representation). These
values correspond with the cross correlation sum

Cm,ε
I,J =

1
w2

w

∑
i, j=1

Rm,ε
i+(I−1)w, j+(J−1)w , I, J = 1 . . .

N
w

(2.12)

between sections in ~x with length w and starting at (I − 1)w + 1 and
(J − 1)w + 1 (for cross-correlation integral cf. Kantz, 1994). The meta re-
currence plot as it has been defined by Casdagli (1997) is a distance matrix
derived from the cross correlation sum (2.12),

Dm,ε
I,J =

1
εm

(
Cm,ε

I,I + Cm,ε
J,J − 2 Cm,ε

I,J

)
. (2.13)

By applying a further threshold value to Dm,ε
I,J (analogous to Eq. (2.6)), a

black-white dotted representation is also possible.

Manuca and Savit (1996) have gone one step further. They have used
quotients from the cross correlation sum to form a meta phase space. From
this meta phase space a recurrence or non-recurrence plot is created,
which can be used to characterize the nonstationarity in time series. For
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Figure 2.5: Continuous on p. 17.
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Figure 2.5: Examples of various defined RPs for a section of the x-component
of the Lorenz system (sampling time ∆t = 0.03): (A) RP computed by using
the L∞-norm, (B) RP computed by using the L1-norm, (C) RP computed by us-
ing the L2-norm, (D) RP computed by using a fixed amount of nearest neigh-
bours (FAN), (E) RP computed by using a threshold corridor [εin,εout], (F) per-
pendicular RP (L2-norm), (G) distance plot (unthresholded RP, L2-norm) and
(H) RP where the y-axis represents the relative time distances to the next recur-
rence points but not their absolute time (“close returns plot”, L2-norm). Except
for (F) and (G), the parameter ε is chosen in such a way that the recurrence
point density (RR) is approximately the same. The embedding parameters
(m = 5 and τ = 5) correspond to an appropriate time delay embedding.

a sufficient explanation the work of Manuca and Savit (1996) is recom-
mended.

Furthermore, the term recurrent plots can be found for RPs in the literature
(e.g. Balasubramaniam et al., 2000). However, this term should not be used for
RPs (it seems that it is sometimes used for return time plots). Finally, it should
be mentioned that the term recurrence plots is sometimes used for another rep-
resentation not related to RPs (e.g. Huang and Sobolev, 2002).

The selection of a specific variant from this variety of RPs depends on
the problem and on the kind of data. Perpendicular RPs are highly recom-
mended for the quantification analysis based on diagonal structures, whereas
corridor thresholded RPs are not suitable for this task. Windowed RPs are
appropriate for the visualization of the long range behaviour of rather long
data sets. If the recurrence behaviour for the states ~xi within a predefined sec-
tion {~xi+i0 , . . . , ~xi+i0+k} of the phase space trajectory is of special interest, an
RP with a horizontal LOI will be practical. We will use the standard RP (2.6)
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according to Eckmann et al. (1987) in this work.

It should be emphasized again that the recurrence of states is an important
feature. Beside the recurrence plots, there are some other methods that use
recurrences. For example, the recurrence in the phase space is used for the
recurrence time statistics (Kac, 1947; Gao, 1999; Balakrishnan et al., 2000), first
return map (Lathrop and Kostelich, 1989), space time separation plot (Proven-
zale et al., 1997) or as a measure for nonstationarity (Kennel, 1997; Rieke et al.,
2002, closely related to the recurrence time statistics).

2.2.2 Structures in Recurrence Plots

The initial purpose of RPs is the visual inspection of higher dimensional phase
space trajectories. The view on RPs gives hints about the time evolution of
these trajectories. The advantage of RPs is that they can also be applied to
rather short and even nonstationary data.

The RPs exhibit characteristic large scale and small scale patterns. The first
patterns were denoted by Eckmann et al. (1987) as typology and the latter as
texture. The typology offers a global impression which can be characterized as
homogeneous, periodic, drift and disrupted.

• Homogeneous RPs are typical of stationary and autonomous systems in
which relaxation times are short in comparison with the time spanned
by the RP. An example of such an RP is that of a random time series
(Fig. 2.6A).

• Oscillating systems have RPs with diagonal oriented, periodic recurrent
structures (diagonal lines, checkerboard structures). The illustration in
Fig. 2.6B is a rather clear periodic system with two frequencies and a fre-
quency ratio of four (the main diagonal lines are divided by four crossing
short lines; irrational frequency ratios cause more complex periodic re-
current structures). However, even for those oscillating systems whose
oscillations are not easily recognizable, the RPs can be used in order to
find their oscillations (an example can be found in Eckmann et al., 1987,
cp. unstable periodic orbits).

• The drift is caused by systems with slowly varying parameters. Such
slow (adiabatic) change brightens the RP’s upper-left and lower-right
corners (Fig. 2.6C).

• Abrupt changes in the dynamics as well as extreme events cause white
areas or bands in the RP (Fig. 2.6D). RPs offer an easy possibility to find
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and to assess extreme and rare events by using the frequency of their
recurrences.

A B C D

Figure 2.6: Characteristic typology of recurrence plots: (A) homogeneous
(uniformly distributed noise), (B) periodic (super-positioned harmonic oscil-
lations), (C) drift (logistic map xi+1 = 4xi(1 − xi) corrupted with a linearly
increasing term, cp. Fig. 2.9D) and (D) disrupted (Brownian motion). These
examples illustrate how different RPs can be. The used data have the length
400 (A, B, D) and 150 (C), respectively; no embeddings are used; the thresholds
are ε = 0.2 (A, C, D) and ε = 0.4 (B).

The closer inspection of the RPs reveals small scale structures (the texture)
which are single dots, diagonal lines as well as vertical and horizontal lines (the
combination of vertical and horizontal lines obviously forms rectangular clus-
ters of recurrence points).

• Single, isolated recurrence points can occur if states are rare, if they do not
persist for any time or if they fluctuate heavily. However, they are not a
unique sign of chance or noise (for example in maps).

• A diagonal line Ri+k, j+k = 1 (for k = 1 . . . l, where l is the length of the
diagonal line) occurs when a segment of the trajectory runs parallel to
another segment, i. e. the trajectory visits the same region of the phase
space at different times. The length of this diagonal line is determined
by the duration of such similar local evolution of the trajectory segments.
The direction of these diagonal structures can differ. Diagonal lines par-
allel to the LOI (angle π/4) represent the parallel running of trajecto-
ries for the same time evolution. The diagonal structures perpendicular
to the LOI represent the parallel running with contrary times (mirrored
segments; this is often a hint for an inappropriate embedding). Since the
definition of the Lyapunov exponent uses the time of the parallel run-
ning of trajectories, the relationship between the diagonal lines and the
Lyapunov exponent is obvious (further explanation in Subsec. 2.2.3).
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• A vertical (horizontal) line Ri, j+k = 1 (for k = 1 . . . v, with v the length of
the vertical line) marks a time length in which a state does not change
or changes very slowly. It seems, that the state is trapped for some time.
This is a typical behaviour of laminar states (intermittency).

These small scale structures are the base of a quantitative analysis of the RPs.
The examples in Fig. 2.6 illustrate how different the small scale patterns

can be. A large amount of single points and the vanishing amount of lines
are caused by heavy fluctuation, which is characteristic for uncorrelated noise
(Fig. 2.6A). The relationship between periodically recurrent structures and os-
cillators is obvious (Fig. 2.6B). The exact recurrent dynamics cause long diago-
nal lines separated by a fixed distance. The nonregular occurrence of short as
well as of long diagonal lines is characteristic for chaotic processes (Fig. 2.6C),
whereas the nonregular occurrence of extended black clusters and extended
white areas corresponds with a nonregular behaviour in the system, which
could be, for example, correlated noise (Fig. 2.6D).

In a more general sense the line structures in an RP exhibit locally the time
relationship between the current trajectory segments. A line structure in an
RP of length l corresponds to the closeness of the segment f (T1(t)) to another
segment f (T2(t)), where T1(t) and T2(t) are the local time scales (or transfor-
mations of an imaginary absolute time scale t) which preserve that f (T1(t)) ≈
f (T2(t)) for some time t = 1 . . . l. Under some assumptions (e. g. piecewise ex-
istence of an inverse of the transformation T(t)) the local slope m(t) of a line in
an RP represents the local time derivative of the product of the inverse second
time scale T−1

2 (t) and the first time scale T2(t)

m(t) = ∂tT−1
2 (T1(t)) . (2.14)

We will consider here an illustrative example. A further explanation of the re-
lationship between the slope of the lines and the trajectories is given in the Sub-
sec. about cross recurrence plots (2.3.2). Let us consider a function f (T) = T(t)
with a section of a monotonical, linear increase Tlin = t and another (hyper-
bolic) section which follows Thyp = −√

r2 − t2 (Fig. 2.7A) and both sections
visit the same area in the phase space. Since the inverse of the hyperbolic sec-
tion is T−1

hyp =
√

r2 − t2, the derivative

m = ∂tT−1
lin

(
Thyp(t)

)
=

t√
r2 − t2

(2.15)

corresponds to the derivative of a circle line with a radius r, a bowed line
structure with the form of a circle occurs in the RP (Fig. 2.7C).

Summarizing the last mentioned points we can establish the following list
of observations and give the corresponding qualitative interpretation:
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Figure 2.7: (A, C) Illustrative example of the relationship between the slope of
lines in an RP and the local derivatives of the involved trajectory segments.
Since the local derivative of the transformation the time scales of the linear
and the hyperbolic sections corresponds to the derivative of a circle line, a
circle occurs in the RP. (B, D) A corresponding structure found in nature: the
solar insolation on the latitude 44◦N for the last 100 kyr (data from Berger and
Loutre, 1991). RPs created without embedding.

1. Homogeneity → the process is obviously stationary

2. Fading to the upper left and lower right corners → nonstationarity; the
process contains a trend or drift

3. Disruptions (white bands) occur → nonstationarity; some states are rare
or far from the normal; transitions may have occurred

4. Periodic patterns → cyclicities in the process; the time distance between
periodic patterns (e. g. lines) corresponds to the period

5. Single isolated points → heavy fluctuation in the process; if only single
isolated points occur, the process may be a random process

6. Diagonal lines (parallel to the LOI) → the evolution of states is similar
at different times; the process could be deterministic; if these diagonal
lines occur beside single isolated points, the process can be from chaos
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(if, in addition, these diagonal lines are periodic, the considered system
contains unstable periodic orbits)

7. Diagonal lines (orthogonal to the LOI) → the evolution of states is similar
at different times but with inverse time; sometimes this is a sign for an
insufficient embedding

8. Vertical and horizontal lines/ clusters → some states do not change or
change slowly for some time (laminar states)

The visual interpretation of RPs requires some experience. The study of
RPs from paradigmatic systems gives a good introduction into characteristic
typology and texture. However, their quantification offers a more objective
way for the investigation of the considered system. With this quantification,
the RPs have become more and more popular within a growing group of sci-
entists who use RPs and their quantification techniques for data analysis (a
search with the Scirus search engine reveals over 200 journal published works
and approximately 700 web published works about RPs).

2.2.3 The Quantitative Analysis of Recurrence Plots

Zbilut and Webber have developed a tool which quantifies the mentioned
structures in the RPs, the recurrence quantification analysis (RQA) (Zbilut and
Webber Jr., 1992; Webber Jr. and Zbilut, 1994). They define measures of com-
plexity using the recurrence point density and diagonal structures in the re-
currence plot: the recurrence rate (or per cent recurrences), the determinism (or
per cent determinism), the divergence (the inverse of the maximal length of di-
agonal structures), the entropy and the trend (or drift). A computation of these
measures in small windows (sub-matrices) of the RP moving along the LOI
yields the time dependent behaviour of these variables. Some studies based
on these RQA measures show that these measures are able to find bifurcation
points, especially chaos-order transitions (Trulla et al., 1996). The RQA is based
on RPs gained by using a fixed threshold ε, hence the RPs are symmetric. In
the following, these RQA measures are introduced. In the Subsec. 2.2.4 we will
adopt this concept in order to quantify the vertical structures in the RP.

The first measure of the RQA is the recurrence rate or per cent recurrences
(REC)

RR =
1

N2

N

∑
i, j=1

Rm,ε
i, j , (2.16)

which simply counts the black dots in the RP. It is a measure of the density of
recurrence points and corresponds to the definition of the correlation sum (2.7)

22



except that the LOI is included. Nevertheless, the constraint for the correlation
sum, that a large amount of data points are needed, also applies to the RR
when used as an estimation of the correlation sum. In the limit

P• = lim
N→∞

1
N2

N

∑
i, j=1

Rm,ε
i, j , (2.17)

this measure becomes the probability of finding a recurrence point in the RP
(probability that a state will recur). With the knowledge of the probability ρ(x)
of the states where dimension m = 1 (or the maximum norm) the recurrence
rate can be analytically computed by using the convolution (Thiel et al., 2003a)

Pε• =
ε∫

−ε

ρ(x) ∗ ρ(x) dx. (2.18)

This probability Pε• can be used to analytically describe the RQA measures for
some systems (Thiel et al., 2002, 2003a).

The next measures consider the diagonal lines. The frequency distribution
of the lengths l of the diagonal structures in the RP is Pε(l) = {li; i = 1 . . . Nl},
where Nl is the absolute number of diagonal lines (each line is counted only
once in contrast to the cumulative distribution1). Processes with stochastic be-
haviour cause none or very short diagonals, whereas deterministic processes
cause longer diagonals and less single, isolated recurrence points. Therefore,
the ratio of recurrence points that form diagonal structures to all recurrence
points

DET =
∑N

l=lmin
l Pε(l)

∑N
i, j Rm,ε

i, j

, (2.19)

is introduced as a measure for the determinism (or predictability) in the system.
However, this measure does not have the real meaning of the determinism of
a process. The threshold lmin excludes the diagonal lines which are formed by
the tangential motion of the phase space trajectory. For lmin = 1 the determin-
ism is equal to the recurrence rate. The choice of lmin could be made in a similar
way as the choice of the size for the Theiler window (cf. remark on p. 13), but
one has to take into account that a too large lmin can worsen the histogram P(l)
and thus the reliability of the measure DET.

1The cumulative distribution for the line length

Pε
c (l) =

Nl

∑
i=1

(i − l + 1) Pε(i)

counts each diagonal line several times, in the sense that a line of length l contains l lines of
length one, (l − 1) lines of length two, (l − 2) lines of length three . . . one line of length l.
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Diagonal structures show the range in which a segment of the trajectory is
rather close to another segment of the trajectory at a different time; thus these
lines give a hint about the divergence of the trajectory segments. The average
diagonal line length

L =
∑N

l=lmin
l Pε(l)

∑N
l=lmin

Pε(l)
(2.20)

is the average time that two segments of the trajectory are close to each other,
and can be interpreted as the mean prediction time. Instead of this average
the RQA uses the maximum length of the diagonal structures or its inverse, the
divergence,

Lmax = max ({li; i = 1 . . . Nl}) respective DIV =
1

Lmax
. (2.21)

Eckmann has stated that “the length of the diagonal lines is related to the
largest positive Lyapunov exponent” if there is one in the considered system
(Eckmann et al., 1987). Different approaches have been suggested in order to
use these lengths for the estimation of the largest positive Lyapunov exponent
as DIV (Trulla et al., 1996) or the average of the inverse of the half lengths of
the diagonals (Choi et al., 1999, they have defined this measure for perpendic-
ular RPs).

The measure entropy refers to the Shannon entropy of the frequency distri-
bution of the diagonal line lengths

ENTR = −
N

∑
l=lmin

p(l) ln p(l) with p(l) =
Pε(l)

∑N
l=lmin

Pε(l)
(2.22)

and reflects the complexity of the deterministic structure in the system. How-
ever, this entropy depends sensitively on the bin number and, thus, may dif-
fer for different realizations of the same process, as well as for different data
preparations.

The measures introduced up to now, RR, DET, L etc. can also be computed
separately for each diagonal parallel to the LOI. The representation of these
diagonalwise computed measures, RR∗(t), DET∗(t) and L∗(t), over the time
distance t from the LOI hints at the determination of the already mentioned
Theiler window (cf. Subsec. 2.2.1). Henceforth, measures with a subscribed
asterisk or index denote diagonalwise computed measures. This diagonal-
wise determination of the RQA measures will receive more importance in the
analysis of CRPs (the definition of the diagonalwise computed measures can
be found in Subsec. 2.3.1, which can be adopted for the RPs). Furthermore,
the measure RR∗ is closely related to the close returns histogram introduced
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by Lathrop and Kostelich (1989). This can be used to find periodic orbits in
low-dimensional chaotic systems (Lathrop and Kostelich, 1989; Mindlin and
Gilmore, 1992; Gilmore, 1998). Since periodic orbits are more closely related
to the occurrence of longer diagonal structures, the measures DET∗ and L∗ are
more suitable candidates for this kind of study. The measure RR∗ have been
already used by Eckmann et al. (1987) for the study of nonstationarity in the
data.

The last RQA measure is the trend, which is a linear regression coefficient
over the recurrence point density RR∗ of the diagonals parallel to the LOI (for
definition see Eq. (2.34) in Subsec. 2.3.1) as a function of the time distance be-
tween these diagonals and the LOI

TREND = ∑Ñ
i=1(i − Ñ/2)(RRi − 〈RRi〉)

∑Ñ
i=1(i − Ñ/2)2

. (2.23)

The trend gives information about a nonstationarity in the process, especially
a drift. The computation excludes the edges of the RP (Ñ < N) because the
statistic lacks by reason of less recurrence points. The choice of Ñ depends
on the studied process. Whereas N − Ñ > 10 should be sufficient for noise,
this difference should be much larger for a process with some autocorrelation
(ten times the order of magnitude of the autocorrelation time should always
be enough). It should be noted that if the time dependent RQA (measures
are computed in shifted windows) is used, TREND will depend strongly on
the size of the windows and may reveal contrary results for different window
sizes.

In some publications a further measure, the ratio, can be found. It is defined
as the ratio between DET and RR (Webber Jr. and Zbilut, 1994) and can be
computed from the frequency distributions of the lengths of the diagonal lines

RATIO = N2 ∑N
l=lmin

l Pε(l)(
∑N

l=1 l Pε(l)
)2 . (2.24)

A heuristic study of physiological systems has revealed that this ratio can be
used in order to discover transitions, because it was found that during certain
types of transitions the RR can decrease, whereas DET does not change at the
same time (Webber Jr. and Zbilut, 1994).

Currently, a satisfying theory about the statistics of these measures of com-
plexity has not been developed. Therefore, a reliable statement about the sig-
nificance of these measures cannot be made. Nevertheless, a possibility for
assessing the significance of these measures lies in applying a sufficient surro-
gate test (but this works only for stationary processes).
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In a more theoretical study, Thiel et al. (2003b) have revealed analytical
solutions for the RQA measures of stochastic systems and maps. Gao and
Cai (2000) have studied the relationship between the RQA measures and a
divergence exponent which is closely related to the largest Lyapunov expo-
nent. Furthermore, the clear relationship between the cumulative distribution
(cf. footnote on p. 23) Pc(l) and the second order Rényi entropy K2 has been
found (Faure and Korn, 1998; Thiel et al., 2003a). Referring to their studies
Thiel et al. (2003a), have stated that the distribution Pc(l) is related rather to K2

than to the largest positive Lyapunov exponent.
An appropriate embedding of time series is motivated by the desire to

avoid false nearest neighbours. However, in an RP false nearest neighbours
will occur as black dots, rather short black lines or (for a specific embedding)
as black lines perpendicular to the LOI (i. e. with an angle of −π/4). Whereas
the estimation of some invariants of the RP (like K2) are independent from the
embedding (and consequently does not need any embedding), the estimation
of the measures RR, DET, L etc. depends on the embedding and needs a suffi-
cient choice (Thiel et al., 2003a).

All these RQA measures are based largely on the distribution of the length
of the diagonal structures in the RP. Additional information about further ge-
ometrical structures as vertical and horizontal elements is not included. In the
following, I will extend this quantitative view to vertical structures and pro-
pose new measures of complexity based on the distribution of the vertical line
length. Since we are using symmetric RPs, we will only consider the vertical
structures in the following.

2.2.4 New Measures of Complexity: Laminarity and Trapping Time

Let us consider a point ~xi of the trajectory and the set of its associated recur-
rence points Ri

Ri =
{
~xj : Ri, j = 1 ; j ∈ [1 . . . N]

}
. (2.25)

Let us denote subsets of these recurrence points

Vi, j =
{

j + 1 . . . j + vj : ~xj 6∈ Ri; ~xj+1 . . .~xj+vj ∈ Ri; ~xj+vj+1 6∈ Ri

}
(2.26)

which form connected vertical structures of the length vj. In continuous time
systems with high time resolution and with an adequately large threshold ε

a large part of these subsets Vi, j usually corresponds to the tangential motion
of the phase space trajectory (cp. Subsec. 2.2.1 on p. 13), i. e. to the sojourn
points described by Gao (1999). However, not all elements of these sets are real
sojourn points. Although sojourn points do not occur in maps, the subsets Vi, j

26



are not necessarily empty because of laminar states. Furthermore, the finite
size of the threshold ε can pretend a tangential motion, although there are
rather small cycles instead of a tangential motion (e. g. Shilnikov chaos).

Next, we determine the length vj =
∣∣Vi, j

∣∣ of all subsets Vi, j. Pi(v) =
{vj ; j = 1 . . . Nv} denotes the set of all occurring subset lengths in Vi (Nv is
the absolute number of the vertical lines), and from

⋃N
i=1 Pi(v) we determine

the distribution of the vertical line lengths Pε(v) in the entire RP.
Analogous to the definition of the determinism (2.19), we compute the ratio

between the recurrence points forming the vertical structures and the entire set
of recurrence points

LAM =
∑N

v=vmin
vPε(v)

∑N
v=1 vPε(v)

, (2.27)

and call it laminarity LAM. The computation of LAM is realized for those v
that exceed a minimal length vmin in order to decrease the influence of sojourn
points. For maps we use vmin = 2. LAM is the measure of the amount of
vertical structures in the whole RP and represents the occurrence of laminar
states in the system without, however, describing the length of these laminar
phases. LAM will decrease if the RP consists of more single recurrence points
than vertical structures.

We define the average length of vertical structures (cp. (2.20))

TT =
∑N

v=vmin
vPε(v)

∑N
v=vmin

Pε(v)
, (2.28)

which we call trapping time TT. The computation also uses the minimal length
vmin as in LAM (2.27). The measure TT contains information about the amount
and the length of the vertical structures in the RP. It measures the mean time
that the system will abide at a specific state (how long the state will be trapped).

Finally, we use the maximal length of the vertical structures in the RP

Vmax = max ({vl ; l = 1 . . . L}) (2.29)

as a measure which is the analogue to the standard measure Lmax (2.21).
In contrast to the known RQA measures, these new measures are able to

find chaos-chaos transitions (Marwan et al., 2002b). Hence, these measures
make the investigation of intermittency possible, even if they are only repre-
sented by rather short and nonstationary data series. Since for periodic dy-
namics these measures are zero, chaos-order transitions can also be identified.

An application to the logistic map xn+1 = a xn (1 − xn) illustrates the po-
tentials of LAM, TT and Vmax. We generate for each control parameter a ∈
[3.5, 4], ∆a = 0.0005 a separate time series (Fig. 2.8). In the analyzed range
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Figure 2.8: (A) Bifurcation diagram of the logistic map. (B) Low ordered su-
pertrack functions si(a) (i = 1 . . . 10) and the fixed point of the logistic map
1 − 1/a (dashed). Their intersections represent periodic windows, band merg-
ing and laminar states. The dotted lines show a choosing of points of band
merging and laminar phases (a = 3.678, 3.727, 3.752, 3.791, 3.877, 3.927).

of a, various regimes and transitions between them occur, e. g. accumulation
points, periodic and chaotic states, band merging points, period doublings,
inner and outer crises (Collet and Eckmann, 1980).

Useful tools for studying the chaotic behavior of the logistic map are the
supertrack functions, which are recursively generated from

si+1(a) = a si(a)
(
1 − si(a)

)
, s0(a) =

1
2

, i = 1, 2, . . . (2.30)

Supertrack functions si(a) represent the functional dependence of stable states
at a given iteration number i on the control parameter a (Oblow, 1988). The
intersection of si(a) with si+ j(a) indicates the occurrence of a j-period cycle
and the intersection of si(a) with the fixed-point (1 − 1/a) of the logistic map
indicates the point of an unstable singularity, i. e. laminar behavior (Fig. 2.8,
intersection points are marked with dotted lines).
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Figure 2.9: Recurrence Plots (RP) of the logistic map for various control pa-
rameters a, near different qualitative changes: periodic-3-window a = 3.830
(A), band merging a = 3.679 (B), supertrack intersection a = 3.720 (C) and
chaos (exterior crisis) a = 4 (D); with embedding dimension m = 3, time delay
τ = 1 and distance cutoff ε = 0.1σ .
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Figure 2.10: Selected RQA measures DET, Lmax and L and the measures LAM,
Vmax and TT. The vertical dotted lines show some of the points of band merg-
ing and laminar behavior (cf. Fig. 2.8), whereby not all of them have been
marked. Whereas DET (A), Lmax (C) and L (E) show periodic-chaotic/ chaotic-
periodic transitions (maxima), LAM (B), Vmax (D) and TT (F) exhibit in addi-
tion to those transitions (minima) chaotic-chaotic transitions (maxima). The
differences between LAM and Vmax are caused by the fact that LAM measures
only the amount of laminar states, whereas Vmax measures the maximal dura-
tion of the laminar states. Although some peaks of Vmax and TT are not at the
dotted lines, they correspond with laminar states (not all can be marked).
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Figure 2.11: The same RQA parameters as shown in Fig. 2.10 under the
influence of additive noise (Gaussian white noise with standard deviation
σ = 0.01). All measures show distortions and different levels of decrease due
to the additive noise. LAM, Vmax and TT still reveal the transitions, whereby
Vmax and TT are less distinct.
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We compute the RPs of at least 1 000 data points and with a cut-off distance
ε = 0.1 (in units of the standard deviation σ). Although an embedding is not
necessary for maps (i. e. m = 1), we use here an embedding of m = 3 and
τ = 1 according to Trulla et al. (1996). The cut-off distance ε is selected to be
10% of the diameter of the phase space. Smaller values would lead to a better
distinction of small variations (e. g. the range before the accumulation point
consists of small variations), but the recurrence point density decreases in the
same way and thus the statistics of continuous structures in the RP becomes
soon insufficient.

For various values of the control parameter a the RPs exhibit specific char-
acteristics (Fig. 2.9). Periodic states cause continuous and periodic diagonal
lines in the RP, but no vertical or horizontal lines. Band merging points in-
ner crises and regions of intermittency represent states with short laminar be-
haviour and cause vertically and horizontally spread black areas in the RP.
Moreover, diagonal lines occur. Fully developed chaotic states (a = 4) cause a
rather homogeneous RP with numerous single points and rare, short, diagonal
or vertical lines. Vertical (and horizontal) lines occur much more frequently
at supertrack crossing points (band merging points included) than in other
chaotic regimes (Fig. 2.8).

We indeed find that the measures LAM, TT and Vmax, which are based
on these vertical structures, enable the identification of the chaos-chaos tran-
sitions to the laminar states (Fig. 2.10 B, C). The measures show distinct max-
ima or peaks at these transitions. Besides, the measures fall to zero within
the period windows, hence, the chaos-order transitions can also be identified.
Since vertical lines occur much more frequently at inner crisis, band merging
points and in regions of intermittency (i. e. laminar states) than in other chaotic
regimes, TT and Vmax grow up significantly at those points. This can also be
seen by looking at the supertrack functions (Fig. 2.8). Although LAM also re-
veals laminar states, it is quite different from the other two measures because
it does not increase at inner crises.

Although noise would influence the analysis, for small noise levels most of
these transitions can be identified (Fig. 2.11). LAM is more robust against noise
than TT and Vmax. With increasing noise LAM, TT and Vmax decrease, narrow
periodic windows are blurred and local maxima at the regions of intermittency
become progressively irrecognisable.

The behaviour of these measures regarding the control parameter a is simi-
lar to some of formerly proposed measures of complexity (Saparin et al., 1994;
Wackerbauer et al., 1994). The Rényi dimension Dq of order q < 0, the fluctua-
tion complexity as well as the normalized entropy exhibit local maxima at re-
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gions of intermittency, rapid increase at inner crises and a rapid decrease and
increase at the transitions between chaos and periodic windows. The differ-
ence between the formerly proposed measures and LAM, TT and Vmax is the
amount of data points needed. Where Saparin et al. (1994) and Wackerbauer
et al. (1994) have used more than 100 000 data points in order parameterize the
mentioned regions of interest, 1 000 would be enough for the measures based
on RPs.

In the Subsec. 3.1 further illustrations will be presented.

2.2.5 Further Possibilities of Quantification

As already mentioned in the subsection 2.2.3, further measures of complexity
can be defined by using RPs. Faure and Korn (1998) have suggested an estima-
tor for the Kolmogorov-Sinai entropy K, which is based on a scaling law over
the cumulative distribution of the diagonal line lengths. Thiel et al. (2003a)
have proposed three further measures of complexity, which are estimators for
the second order Rényi entropy K2, the correlation dimension D2 and the gen-
eralized mutual information I. These measures are invariants of the RP and do
not need any embedding. The generalized mutual information can be resolved
by the intersection (multiplication) of the RPs and by computing the RR of this
intersection. For some chaotic oscillatory systems, they have found two scaling
regions in the cumulative distribution of the diagonal line lengths. The second
corresponds to K2, whereas the first one applies to short time scales. This first
scaling region cannot be resolved with the Grassberger-Procaccia algorithm.

Gao (1999) has used the time distance of recurrence points in the vertical di-
rection and calls it recurrence time. He has distinguished between recurrence
times of first type T1 and second type T2:

T1
j =

∣∣{i, j : ~xi,~xj ∈ Ri
}∣∣ (2.31)

and
T2

j =
∣∣{i, j : ~xi,~xj ∈ Ri; ~xj−1 6∈ Ri

}∣∣ (2.32)

where Ri are the recurrence points which belong to the state ~xi (2.25). These
times are the time distances between the state at time i and its recurrences at
time j. In an RP these time distances are expressed as vertical distances of
the recurrence points in a column from the LOI. According to Gao (1999) the
sojourn times have to be removed which leads to the recurrence time of the
second type. However, following the given definition (2.32), all points forming
vertical structures are removed except the first point of these structures, hence,
laminar states are also excluded. If the recurrence times are determined by
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using a perpendicular RP, the effect of the tangential motion will vanish, and
consequently T1 ≈ T2, although the vertical structures based on the laminar
states still occur. The power law of 〈T1〉 respective 〈T2〉 over the threshold ε

corresponds with the information dimension DI (Gao, 1999). This procedure is
called recurrence time statistics and goes back to the middle of the last century
(Kac, 1947).

Likewise, the vertical distribution of the recurrence points is used for the
study of unstable periodic orbits. Lathrop and Kostelich (1989) have intro-
duced a histogram of recurrence points in respect to their time distance to a
reference point (vertical distance to the LOI). This histogram corresponds to
the histogram of T1 as well as to the diagonalwise computed recurrence rate
RR∗ (cp. Eq. (2.34) in Subsec. 2.3.1, which defines RR∗ for CRPs, but it holds
also for RPs) and has been denoted as “close returns histogram” by these au-
thors. However, they have not used an embedding for this approach, hence,
a lot of false recurrences as well as the effect of the tangential motion will dis-
tort the “close returns histogram”. This is not a real problem for prototypical
model systems, but it complicates the determination of periodic orbits in real
data (for example, the application to economic data does not manifest satisfy-
ing results; Gilmore, 1993, 2001). The analysis of the measures based on the di-
agonal structures DET∗ and L∗, the embedding of the data as well as the usage
of perpendicular RPs would significantly improve this technique for finding
unstable periodic orbits.

Using the set of recurrence points Ri (2.25) associated to the state at i and
using a linear approach (dynamics is locally linear), Lathrop and Kostelich
(1989) have estimated Lyapunov exponents from the recurrence information.
Additionally, once the Lyapunov exponents are found, they can be used for an
estimation of the information dimension DI (Lathrop and Kostelich, 1989).

The RPs test the distance between all points of the same phase space trajec-
tory. However, why should not it be possible to test each point of one trajectory
with each point of another trajectory in the same phase space? This leads us to
the concept of cross recurrence plots (CRP), which we will focus on in the next
section.

2.3 Cross Recurrence Plots

Starting with the concept of RPs we regard a phase space with one trajectory
~xi of length Nx. Now we add a second trajectory ~yj with the length Ny into the
same phase space (Fig. 2.12). The test between all points of the first trajectory
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Figure 2.12: (A) Segments of the phase space trajectories of the El Niño South-
ern Oscillation Index (SOI, black line) and a precipitation time series of San
Salvador de Jujuy (Argentina, gray line) by using time delay embedding
(smoothed, monthly data; τ = 7 months). In (B) the corresponding cross recur-
rence plot is shown. If a point of the precipitation trajectory at j (black point on
the gray line in (A)) falls into the neighbourhood (gray circle in (A)) of a point
of the SOI trajectory at i, in the CRP at the location (i, j), a black point will be
marked. A point outside the neighbourhood (small circle in (A)) is marked as
a white point in the CRP. For creating this CRP the FAN criterion with ε = 0.15
is used.

with all points of the second trajectory leads to the cross recurrence plot (CRP)

CRm,εi
i, j = Θ

(
εi −

∥∥~xi −~yj
∥∥)

, ~xi, ~yj ∈ Rm,

i = 1 . . . Nx, j = 1 . . . Ny. (2.33)

The notation is analogous to the definition of RPs (2.6). If in the second trajec-
tory a state at time j is close to a state on the first trajectory at time i, a black dot
will be assigned to the matrix CR at location (i, j). This occurrence of neigh-
bours in both trajectories is not a “recurrence” of states, hence, the matrix (2.33)
does not represent recurrences but the conjunctures of states of both systems.
Therefore, this representation is not really a “cross recurrence plot”. Never-
theless we call it “cross recurrence plot” in order to follow the way of a gen-
eralization of RPs and because of the occurrence of the term “cross recurrence
quantification” in the literature for the parallel concept of the generalization of
the RQA (Zbilut et al., 1998). The vectors ~x and ~y do not need to have the same
length, hence the matrix CR is not necessarily square. This extension of RPs
was first used by Zbilut et al. (1998) for the cross recurrence quantification. Inde-
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pendently of their work, the concept of cross recurrence plots also surfaces in
Marwan (1999).

Both trajectories for the creation of a CRP have to represent the same dy-
namical system with equal state variables because they are in the same phase
space. This must be taken into account if time series of different measure-
ments (e. g. temperature and pressure) are involved. For the embedding and
the following CRP analysis the time series can be taken from different mea-
surements if they are components or state variables of the same system. A
precedent data normalization solves the problem of different units. However,
the application of CRPs to absolutely different measurements, which are not
observations of the same dynamical system (e. g. a stocks index and the preces-
sion of the Earth’s rotation), is not possible. For such different kinds of data the
presently developed concept of intersected RPs can be used (cf. Subsec. 2.4).

Assuming that both trajectories come from the same process but different
absolute values, the CRP will not become the expected RP if a fixed threshold ε

is chosen. Therefore, it is necessary to adapt both trajectories to the same range
of values, e. g. by using a normalization to the standard deviation. However,
the application of a fixed amount of nearest neighbours (FAN), i. e. εi changes
for each state xi, solves this problem automatically, and a modification of the
amplitudes is not necessary. The latter choice of a neighbourhood has the ad-
ditional advantage of working well for slowly changing trajectories (e. g. drift).

Since the values of CRi,i (i = 1 . . . N) are not necessarily one, the black
main diagonal usually vanishes. As we will discuss in Subsec. 2.3.2, the line
of identity (LOI) can be replaced by the line of synchronization (LOS) and may
ultimately not have the angle π/4. Apart from that, the statements given in the
subsection about the structures in RPs (Subsec. 2.2.2) hold also for the CRPs.
However, the lines which are more or less diagonally orientated are here of
major interest too. They represent segments on the both trajectories, which run
parallel for some time. The frequency and lengths of these lines are obviously
related to a certain similarity between the dynamics of both systems.

An additional time dilatation or time compression of one of the trajectories
causes a distortion of the main diagonal line (cp. remarks about the relation-
ship between the slope of RP lines and the local derivatives of the trajectories
in Subsec. 2.2.2). This case will be discussed in subsection 2.3.2. In the follow-
ing subsection we presume that both systems have the same time scale (equal
length N and sample time ∆t), hence, the CRP is a N × N array.
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2.3.1 Measures for Similarities Between Two Observed Processes

The long diagonal structures in the CRP reveal similar time evolution of the
trajectories of both processes. It is obvious that a progressively increased sim-
ilarity between both processes causes an increase of the recurrence point den-
sity along the main diagonal CRi,i (i = 1 . . . N) until a black straight main
diagonal line occurs (which would be in fact the LOI, and the CRP becomes an
RP). Thus, the occurrence of diagonal lines in a CRP can be used in order to
benchmark the similarity between the considered processes.

In order to quantify this similarity some quantitative measures have to be
defined. Since we use the occurrence of the more or less discontinuous di-
agonal lines, the RQA measures (cf. Subsec. 2.2.3) should be suitable for this
purpose after some modifications. Especially, they have to be modified in such
a way that they can be used as a diagonalwise criterion for the vanishing di-
agonal lines (Marwan and Kurths, 2002).

Let us consider a diagonal CRi, j ( j − i = k = const.) which is parallel to
the main diagonal and has a time distance t = k ∆t from the main diagonal.
The recurrence points in this diagonal correspond with tests between the time
delayed trajectories (delay t). In the following, some RQA measures will be
redefined for these diagonals. Hence, these measures will be functions of the
distance k from the main diagonal. Using this approach it is possible to assess
the similarity in the dynamics depending on a certain time delay.

Following this procedure we need to define the frequency distributions of
the diagonal line lengths Pε

k (l) = {li; i = 1 . . . Nl} (Nl is the absolute number
of diagonal lines) for each diagonal parallel to the main diagonal CRm,ε

i, j ( j −
i = k). For k = 0 this line is the LOI, k > 0 diagonals above and k < 0
diagonals below the LOI, which represent positive and negative time delays,
respectively.

The recurrence rate RR is now modified to

RRk = RR∗(t) =
1

N − k ∑
j−i=k

CRm,ε
i, j =

1
N − k

N−k

∑
l=1

l Pε
k (l) (2.34)

and reveals the probability of the occurrence of similar states in both systems
with a certain delay t = k ∆t. A high density of recurrence points in a diag-
onal results in a high value of RR∗. This is the case for the systems whose
trajectories often visit the same phase space regions.

Analogous to the RQA the determinism

DETk =
∑N−k

l=lmin
l Pε

k (l)

∑N−k
l=1 l Pε

k (l)
(2.35)
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is the proportion of recurrence points forming long diagonal structures to all
recurrence points, but here it is constrained to the considered diagonal. Smooth
trajectories with long autocorrelation times will result in a CRP with long diag-
onal structures, even if the trajectories are not linked to each other (this effect
corresponds to the tangential motion of one trajectory). In order to avoid the
counting of such “false” diagonals, the lower limit for the diagonal line length
lmin should be of the order of the autocorrelation time.

Stochastic as well as heavily fluctuating processes cause none or only short
diagonals, whereas deterministic processes cause longer diagonals. If two de-
terministic processes have the same or similar time evolution, i. e. parts of the
phase space trajectories meet the same phase space regions for certain times,
the amount of longer diagonals increases and the amount of shorter diagonals
decreases. The average diagonal line length

Lk =
∑N−k

l=lmin
l Pε

k (l)

∑N−k
l=lmin

Pε
k (l)

(2.36)

quantifies the duration of such a similarity in the dynamics. A high coinci-
dence of both trajectories increases the length of these diagonals. Besides, the
entropy of the probability Pε

k (l) can also be defined. Still, we focus here on the
first three measures.

High values of RR∗ represent high probabilities of the occurrence of the
same state in both processes, high values of DET∗ and L∗ represent a long
time span of the occurrence of a similar dynamics in both processes. Whereas
DET∗ and L∗ are sensitive to fast and highly fluctuating data, RR∗ measures
the probabilities of the occurrence of the same states in spite of these high
fluctuations (noisy data). It is important to emphasize that these parameters
are statistical measures and that their validity increases with the size of the
CRP, i. e. with the observation length.

An additional CRP

CR−
i, j = Θ

(
εi −

∥∥~xi +~yj
∥∥)

(2.37)

with opposite signed second trajectory −~yj allows to distinguish positive and
negative relations between the considered trajectories (Marwan and Kurths,
2002). In order to recognize the measures for both possible CRPs, we add the
superscript index + to the measures for the positive linkage and the super-
script index − for the negative linkage, e. g. RR+

k and RR−
k .

Another approach used to study the positive and negative relations be-
tween the considered trajectories involves using the composited measures for

38



the recurrence rate

RRc
k =

1
N − k ∑

j−i=k

(
CR+

i, j − CR−
i, j

)
, (2.38)

the determinism

DETc
k = DET+

k − DET−
k , (2.39)

and the average diagonal length

Lc
k = L+

k − L−
k , (2.40)

where P±
k (l) is the histogram of the diagonal line lengths in CR±

i, j ( j − i =
k), as it is used in Marwan et al. (2003) and in the example in Subsec. 3.2.2.
This representation is similar to those of the cross correlation function and is
more intuitive than the separate representation of RR+∗ , RR−∗ etc. However, for
the investigation of interrelations based on even functions, these composited
measures are not suitable.

A further substantial advantage of this method is its capability of also find-
ing nonlinear similarities in short and nonstationary time series with high
noise levels as they typically occur, e. g., in biology or earth sciences (exam-
ples in Subsec. 3.2.1).

However, the shortness and nonstationarity of data limit this method as
well. As mentioned, one way to reduce problems accompanying nonstation-
ary data is the alternative choice of a neighbourhood with a fixed amount of
neighbours.

2.3.2 Time Scale Alignment of Time Series

In data analysis one is often faced with time series measured on varying time
scales. These could be, for example, sets from borehole or core data in geo-
physics or tree rings in dendrochronology. Sediment cores might have un-
dergone a number of coring disturbances such as compression or stretching.
Moreover, cores from different sites with differing sedimentation rates would
have different temporal resolutions. All these factors require a method of syn-
chronizing or aligning the time scales.

Regarding the conventional RP (2.6), a black main diagonal line (LOI) can
always be found in the plot because of the identity of the (i, i) states. The RP
can be considered as a special case of the CRP which usually does not have a
main diagonal because the (i, i) states are not identical.

Assuming two identical trajectories, the CRP is the same as the RP of one
trajectory and contains an LOI. If we slightly modify the values of the second
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Figure 2.13: Cross recurrence plots of sine functions f (t) = sin(ϕt) and g(t) =
sin(ϕt + a sin(ψt)), whereas (A) a = 0, (B) a = 0.5 and (C) a = 1. The variation
in the time domain leads to a deforming of the synchronization line. The CRPs
are computed without embedding.

trajectory, the LOI will become somewhat disrupted. This leads to the situa-
tion discussed in Subsec. 2.3.1. However, if we do not modify the amplitudes
but stretch or compress the second trajectory slightly, the LOI will be kept con-
tinuous but not as a straight line with an angle of π/4. Rather this line can
be bowed (Fig. 2.13). As we have already seen in the Subsec. 2.2.2, the local
slope of lines in an RP as well as CRP corresponds to the transformation of the
time axes of the two considered trajectories (Eq. (2.14); Marwan et al., 2002a).
A time shift between the trajectories causes a dislocation of the LOS. Hence,
the LOS may lie rather far from the main diagonal of the CRP.

For illustration, let us consider two sine functions where we rescale the
time axis of the second sine function in the following way

sin(ϕt) −→ sin
(
ϕt + a sin(ψt)

)
. (2.41)

The terms rescaling and synchronization are used here in the meaning of the
rescaling of the time scale. The rescaling of the second sine function with dif-
ferent parameters a results in a deformation of the main diagonal (Fig. 2.13).
The distorted line contains the information on the rescaling, which we need in
order to re-synchronize the two functions. Therefore, this distorted diagonal
is called line of synchronization (LOS).

In the following, we present a toy model in order to explain the relation be-
tween the time series f (t1), g(t2) and the LOS t2 = φ(t1). In a one dimensional
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situation, the CRP is simply

CR(t1, t2) = Θ
(
ε − ‖ f (t1)− g(t2)‖

)
. (2.42)

Provided that we set ε = 0 to simplify the condition, (2.42) will deliver a
recurrence point if

f (t1) ≡ g(t2). (2.43)

In general, this is an implicit condition that links the variable t1 to t2. Consid-
ering the physical examples above it can be assumed that the time series are
essentially the same; that means that f ≡ g, up to a rescaling function of time.
So we can state

f (t1) ≡ f
(
φ(t1)

)
. (2.44)

In some special cases (2.44) can be resolved with respect to t1. An example
of such a special case is a system of two sine functions with different frequen-
cies

f (t) = sin(ϕ · t +α), g(t) = sin(ψ · t + β) (2.45)

Using (2.43) and (2.44) we find

sin (ϕ t1 +α)− sin (ψ t2 + β) = 0, (2.46)

and one explicit solution of this equation is

⇒ t2 = φ(t1) =
(

ϕ

ψ
t1 + γ

)
(2.47)

with γ = α−β
ψ

. In this special case the slope m of the main line in the corre-
sponding cross recurrence plot represents the frequency ratio, and the distance
between the origin of the axes and the intersection of the LOS with the ordi-
nate reveals the phase difference. Considering the time transformation func-
tions T1 = ϕ · t +α and T2 = ψ · t + β whithin the equations (2.45) and the
inverse T−1

2 = t−β
ψ

, we get the same result for the slope of the LOS by using
the derivative (2.14)

m = ∂tT−1
2 (T2(t)) =

ϕ

ψ
. (2.48)

The function t2 = φ(t1) is the transfer or rescaling function which allows
to rescale the second system to the first system. If the rescaling function is not
linear, the LOS will also be curved.

If the functions f (·) and g(·) are not identical, our method will in general
not be capable of deciding whether the difference in the time series is due
to different dynamics ( f (·) 6= g(·)) or to simple rescaling. So the assump-
tion is essential that the dynamics remain equal up to a rescaling in time (the
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underlying systems must be the same). Nevertheless, for some cases where
f 6= g, the method can be applied in the same way. If we consider the functions
f (·) = a · f̄ (·) + b and g(·) = ḡ(·), whereby f (·) 6= g(·) are the observations
and f̄ (·) = ḡ(·) are the states, normalization, with respect to the mean and the
standard deviation, will allow to use our method,

f (·) = a · f̄ (·) + b −→ f̃ (·) =
f (·)− 〈 f (·)〉

σ ( f (·)) (2.49)

g̃(·) =
g(·)− 〈g(·)〉

σ (g(·)) . (2.50)

With ḡ(·) = f̄ (·) the functions f̃ (·) and g̃(·) are the same after the normal-
ization, hence, our method can be applied without any further modification.

For application one has to determine the LOS – usually non-parametrically
– and then rescale one of the time series by using this function (for an illustra-
tion cf. Subsec. 3.3.1). This connection between the local slope of the LOS and
the relation between the segments of the trajectories also applies to the other
line structures in CRPs as well as RPs (cp. Fig. 2.7 on p. 21).

This technique can also be used in order to find the closest matching seg-
ments in two data series. For example, in the geological framework there could
be a long reference data series which has a time scale and a second but short
profile with the same physical measurement. The task lies in finding the sec-
tion in the reference data which matches to the second profile in order to yield
the corresponding time scale for the profile. This section can be found by look-
ing for a more or less continuous black line in the CRP (the dislocated LOS).
An example is given in Subsec. 3.3.2.

The CRP based alignment of time series has conspicuous similarities with
the method of sequence slotting described by Thompson and Clark (1989). The
first step in their method is the calculation of a distance matrix (2.11), which
allows the use of multivariate data sets. Thompson and Clark (1989) referred
to the distance measure as dissimilarity. It is used to determine the alignment
function in such a way that the sum of the dissimilarities along a path in the
distance matrix is minimized. This approach is based on dynamic program-
ming methods which were mainly developed for speech pattern recognition
in the 1970’s (e. g. Sakoe and Chiba, 1978). In contrast, RPs were developed
to visualize the phase space behaviour of dynamical systems. Therefore, a
threshold was introduced to make recurrent states visible. The involvement
of a FAN in the phase space and the possibility of increasing the embedding
dimensions distinguish my approach from the sequence slotting method.
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2.4 Current Developments of Recurrence Plots

During the last five years, a rather promising development of recurrence plots
has been in progress. These new findings work toward a better understanding
of the structures found in RPs. As already explained in the subsection about
the RQA (Subsec. 2.2.3), an RP can be used in order to obtain some properties
of dynamical systems, such as the Rényi entropy, the correlation dimension
or the information dimension (Faure and Korn, 1998; Gao, 1999; Thiel et al.,
2003a). The most recent development in our group proposes intersections of
RPs and time shifted RPs

Rm, ε̂
i, j · Rm, ε̃

i+τ , j+τ (2.51)

which can be used for the estimation of the generalized mutual information
(Thiel et al., 2003a). Furthermore, this approach can also be applied to differ-
ent phase space trajectories, which leads to a completely new concept of cross
recurrence plots (Romano et al., 2003, this kind of cross recurrence plot is de-
noted as XRP). Based on this new approach, the cross mutual information and
Rényi entropy can be estimated. In addition, the XRP can be used to study
phase synchronization. The XRP can be applied to measurements of differ-
ent systems whose observations cannot be considered as state variables of the
same system. XRPs are not restricted to only two systems; it is a multivariate
analysis tool. In contrast to CRPs, XRPs can only be applied to time series of
equal time scale, length and sample resolution.

The development of RP based methods is not yet concluded. The last three
years in particular have shown that large potential lies in the analysis of RPs.

2.5 Software and Applications

Since RPs are especially suitable for the analysis of short and nonstationary
data, their application to real measurements in numerous scientific fields is
obvious. Moreover, a representation of an RP displays amazing structures and
can be rather decorative. Therefore, RPs and their quantification analysis have
become increasingly present in the scientific community.

2.5.1 Free Software for Recurrence Plot Based Analysis

Free available software for the creation of RPs and their quantitative analysis
facilitates the spread of their application (no requirement on completeness):

• RQA Software 7.1 (by Charles Webber Jr.)
allows for the creation of RPs as well as CRPs and their quantification,
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only for DOS, commandline based
http://homepages.luc.edu/~cwebber

• Visual Recurrence Analysis 4.2 (by Eugene Kononov)
creation of RPs and computing the RQA measures, only for MS Win-
dows, graphical user interface
http://home.netcom.com/~eugenek

• CRP Toolbox 4.3 (by Norbert Marwan)
allows for the creation of RPs as well as CRPs, quantification analysis of
RPs and CRPs includes the new measures of complexity proposed in this
work, time scale alignment tool based on CRPs and further useful tools
and methods of nonlinear time series analysis and data preparation are
provided, platform independent (for Matlab), both usage of graphical
user interface as well as commandline call is possible
http://tocsy.agnld.uni-potsdam.de

A comparison between some of these programmes can be found in (Belaire-
Franch and Contreras, 2002).

2.5.2 Cross Recurrence Plot Toolbox

During my study with recurrence plots, I have developed a comprehensive
Matlab toolbox. This toolbox contains various algorithms for creating RPs
and CRPs by providing several norms, criteria of neighbourhoods and various
types of RPs and CRPs. The tool for quantification of RPs and CRPs includes
the measures of complexity proposed in this work (LAM, TT, Vmax) as well as
the known RQA measures (RR, DET, L, ENTR, TREND etc.). These measures
can be computed for shifted windows as well as for diagonals of the RPs and
CRPs. An alignment tool enables the search of a non-parametric LOS in CRPs.
Further useful tools for data preparation and nonlinear data analysis are in-
cluded, like tools for normalization of data, aligning the length of two time
series, computation of multi-dimensional histograms, multi-dimensional mu-
tual information, entropies, 2D and 3D phase space representation, estimation
of AR coefficients etc.

This toolbox is available through the WorldWideWeb. An online and print-
able manual with illustrative examples as well as an extensive bibliography of
applications of RPs can also be found there. The current address is

http://tocsy.agnld.uni-potsdam.de.
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Several scientists from Canada, China, Germany, Italy, Poland, United King-
dom, USA and others are applying this toolbox for the analysis of data from,
for example, economics, climate, solar physics, cardiology or hardware analy-
sis.

2.5.3 Application Potentials

The search for applications via search engines in the World Wide Web reveals
numerous workings which have used RPs (at present, the Scirus search engine
finds over 200 journal published articles and approximately 700 web published
works). RPs and the RQA are most popular in physiology. However, first
applications in economy, ecology, astrophysics and geology can also be found.
In the following, a small selection of applications of RPs and the classical RQA
gives an overview about the applicability of the method. In the next chapter
some special applications of the new proposed RP measures as well as of the
CRPs are presented.

One of the first applications of RPs has been the analysis of heart beat inter-
vals (Zbilut et al., 1991). This study has revealed typical RPs for cardiac trans-
plant patients and cardiomyopathy patients who underwent volume loading.
Applying the RPs, the authors have inferred that the dimensionality and en-
tropy of the heart beat variations decrease during a significant cardiac event
like myocardial infarction or ventricular tachycardia.

In further physiology research RPs as well as RQA have been applied to,
for example, electromyographic data (Webber Jr. et al., 1995), measurements
based on eye movements (optokinetic nystagmus, Shelhamer, 1997), data of
postural fluctuations (Riley et al., 1999), EEG data (Babloyantz, 1991; Thomas-
son et al., 2001) or neuronal signals (Faure and Korn, 2001), in order to study
the interacting physiological processes.

The RPs have been used for research in economics. For example, RPs
have been inspected visually in order to find chaos in economics time series
(Gilmore, 1993, 2001). Whereas these visual inspections could not find chaos in
the considered economic time series (e. g. unemployment rate, private domes-
tic investment, exchange rate), a combined “close returns” and surrogate test
seems to reveal nonlinear dependences among data of exchange rates. Other
studies of exchange data have used the RQA and have also found significant
correlations between various currencies (Strozzi et al., 2002). In contrast to the
results of Gilmore (2001) the research of others who used the RQA has revealed
chaos in exchange data (Hołyst et al., 2001; Belaire-Franch et al., 2002).

An astrophysical application of RPs has used the radiocarbon data of the
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last 7 000 years (Kurths et al., 1994). The atmospheric radiocarbon is influ-
enced by the variation of solar activity and exhibits century-scale variations
of chaotic nature. The main findings based on the RP analysis and a surro-
gate test reveal that these variations are indeed different from linear processes
and that there are different types of large events affecting their tendency to
recur (e. g. the Maunder Minimum seems to be unique, whereas the Oort and
Dalton Minima as well as the Medieval Maximum tend to recur). Moreover,
the authors have found that the present day data are similar to the Medieval
Maximum.

An RQA has applied to a DNA sequence of the genome Caenorhabditis ele-
gans (Frontali and Pizzi, 1999). Caenorhabditis elegans is a small (approximately
1 mm long) soil nematode found in temperate regions. This analysis has re-
vealed long-range correlations in the introns and intergenic regions, which
are caused by the frequent recurrence of oligonucleotides (a short sequence of
some hundreds of nucleotides) in these regions. The recurrence of the oligonu-
cleotides has been discovered by computing the recurrence rate for overlap-
ping windows which cover the DNA sequence.

Elwakil and Soliman (1999) have applied RPs to time series generated by
models of the Twin-T, Wien-bridge and other chaos generating electronic os-
cillator circuits. Through visual inspection of the RPs, the chaotic behaviour
of the model results has been confirmed. RPs have been used to estimate opti-
mal embedding parameters and vicinity threshold which are used for a noise
reduction scheme in human speech signals (Matassini and Manfredi, 2002).

An analysis based on RPs has been used to study monopole giant reso-
nances in atomic nuclei (Vretenar et al., 1999). Due to the fact that a nu-
cleus consists of protons and neutrons, the oscillations can be divided into two
modes: (1) the densities of protons and neutrons oscillates in phase (isoscalar
mode) and (2) the two densities have opposite phases (isovector mode). Both
of these modes exhibit significantly different RPs. Where the oscillation of the
isoscalar mode has an RP typical for regular oscillations, the RP for the isovec-
tor mode uncovers nonstationary and chaotic dynamics.

Further applications can be found in chemistry. Rustici et al. (1999) have
applied the RQA to the Belousov-Zhabotinsky reaction and have studied the
transitions during its chemical evolution in an unstirred batch reactor. Us-
ing the RQA measures, the transitions between periodic, quasiperiodic and
chaotic states could be observed. Other applications in chemistry/ molecular
biology concern the dynamics of chemical processes, for example in molecu-
lar dynamics simulations of polypeptides (Giuliani and Manetti, 1996; Manetti
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et al., 2001). Applying the RQA to glycoproteins of the paramyxovirus2 has un-
covered the interaction between specific glycoprotein partners (Giuliani and
Tomasi, 2002).

There are many examples of further research which uses RPs and RQA. A
more extensive bibliography can be found on the web site of the CRP tool-
box (http://tocsy.agnld.uni-potsdam.de) or on the recurrence plot web
site (http://www.recurrence-plot.tk).

2The family of Paramyxoviridae contains viruses that induce a wide range of distinct clinical
illnesses in humans, for example the measles virus, mumps virus and the parainfluenza viruses
(Source: http://web.uct.ac.za/depts/mmi/stannard/paramyx.html).
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Chapter 3

Applications

The high potential for the analysis based on recurrence plots arises with their
applicability. Hundreds of applications of recurrence plots and recurrence
quantification analysis, especially to physiological data, represent the increas-
ing importance of these methods. In this chapter selected applications of the
newest strategies based on recurrence plots to geological and physiological
data are presented. Methods of linear and nonlinear data analysis mostly fail
in these applications because of the rather short length of the time series and
their nonstationarity. Except for the examples in the Subsec. 3.3.2 all results
of these applications are already published or in press. The corresponding
articles are attached in the Appendix.

3.1 Laminarity and Trapping Time

Recent studies suggest also including the vertical structures of RPs into the
RQA. In order to quantify them, the new measures laminarity and trapping
time were introduced (definitions in Subsec. 2.2.4). The analysis of the verti-
cal structures in RPs with these measures enables a detection of chaos-chaos
transitions as they occur as laminar states. The suitability of these measures is
presented in the following two applications.

3.1.1 Analysis of VT Heart Rate Intervals

A major challenge in physiology is the analysis of cardiac time series. Heart
rate variability (HRV) typically shows a complex behaviour, and it is difficult
to identify disease specific patterns (Fig. 3.1). Implantable cardioverter defib-
rillators (ICD) are a safe and effective treatment of ventricular tachycardia or
fibrillation (VT). These fatal cardiac arrhythmias are the main factors trigger-
ing sudden cardiac death. A fundamental challenge in cardiology is detecting
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Figure 3.1: Recurrence plots of the heart beat interval (HBI) time series at a
control time (A) and before a VT (B) with m = 6 and ε = 170. The RP before
a life-threatening arrhythmia is characterized by big black rectangles whereas
the RP from the control series shows only small rectangles.

of early signs of VT in patients with an ICD based on HRV data (e. g. Diaz
et al., 2001). Recent studies have applied standard methods, methods based
on symbolic dynamics as well as finite time growth rates to the HRV parame-
ters of time and frequency domain (Diaz et al., 2001; Kurths et al., 1995; Voss
et al., 1996; Wessel et al., 2000). One of the first applications of RPs has been in
the study of heart beat intervals (Zbilut et al., 1991). The authors of this early
application have supposed that the RPs may be useful for the study of heart
rate variability in patients at risk for cardiac arrhythmia.

The defibrillators used in this study are able to store at least 1000 heart beat
intervals (HBIs) prior to the onset of VT (10 ms resolution), corresponding to
approximately 9–15 minutes. 24 ICD stored HBIs of 17 ICD patients at the
Franz-Volhard-Hospital with severe congestive heart failure are available. We
have studied their HBIs before the onset of VT episodes and at control intervals
without VT.

The RP before a life threatening arrhythmia is characterized by large black
rectangles, whereas the RP from the control series shows only small rectangles
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Table 3.1: Results of maximal diagonal and vertical line length shortly before
VT and at control time, nonparametric Mann-Whitney U-test, p – significance;
* – p < 0.05; ** – p < 0.01; n. s. – not significant p ≥ 0.05)

m ε VT Control p

Maximal diagonal line length Lmax

3 77 396.6±253.8 261.5±156.6 n. s.
6 110 447.6±269.1 285.5±160.4 *
9 150 504.6±265.9 311.6±157.2 *

12 170 520.7±268.8 324.7±180.2 *

Maximal vertical line length Vmax

3 77 261.4±193.5 169.2±135.9 *
6 110 283.7±190.4 179.5±134.1 **
9 150 342.4±193.6 216.1±137.1 **

12 170 353.5±221.4 215.1±138.6 **

(Fig. 3.1). All standard RQA measures described in Webber Jr. and Zbilut
(1994) as well as the new measures LAM, TT and Vmax for different embedding
dimensions m and vicinity threshold radii ε are calculated for these data (fixed
ε and Euclidean norm are used). By using a rank test (Mann-Whitney U-test),
significant differences between both groups of data for several of the measures
mentioned above can be found. However, the most significant measures for
rather large radii are Vmax and Lmax (Tab. 3.1). The vertical line length Vmax is
more powerful in significantly discriminating between both groups than the
diagonal line length Lmax, as can be recognized by the higher significance for
Vmax (p-values in Tab. 3.1).

The application of the newly introduced measures to heart rate variabil-
ity data has shown that they are able to detect and quantify laminar phases
before a life threatening cardiac arrhythmia and, thus, predict its occurrence
(cp. App. A, Marwan et al., 2002b; Wessel et al., 2001). These findings may be
of importance for the therapy of malignant cardiac arrhythmias.

3.1.2 Analysis of ERP Data

Neurons are known to be nonlinear devices because they become activated
when their somatic membrane potential crosses a certain threshold (Kandel
et al., 1995). This nonlinearity is one of the essentials in neural modelling as de-
scribed by the sigmoidal activation functions in neural networks (Amit, 1989).
The activity of large formations of neurons is macroscopically measurable in
the electroencephalogram (EEG) of the human scalp, which results from a spa-
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tial integration of postsynaptic potentials. However, it is debated whether the
EEG should be treated as a time series stemming from a linear or a nonlin-
ear dynamical system. Applying nonlinear techniques of data analysis to EEG
measurements has a long tradition. Most of these attempts involved estimat-
ing of the correlation dimension of spontaneous EEG (e. g. Babloyantz et al.,
1985; Rapp et al., 1986; Gallez and Babloyantz, 1991; Lutzenberger et al., 1992;
Pritchard and Duke, 1992). Theiler et al. (1992) have applied the technique
of surrogate data to correlation dimensions of EEG and reported that there is
no evidence of low dimensional chaos but of significance for nonlinearity in
the data. While correlation dimensions are only well defined for stationary
time series generated by a low dimensional dynamical system moving around
an attractor, these measures fail in investigating event related brain potentials
(ERPs) because they are nonstationary by definition (Sutton et al., 1965). Event
related potentials are characteristic changes in the EEG of a subject during and
short after a stimulus (surprising moment).

Traditionally, ERP waveforms are determined by computing an ensemble
average of a large collection of EEG trials that are stimulus time locked. This is
based on the following assumptions: (1) the presentation of stimuli of the same
kind is followed by the same sequence of processing steps, (2) these processing
steps always lead to activation of the same brain structures, (3) this activation
always elicits the same pattern of electrophysiological activity, which can be
measured at the scalp (Rösler, 1982) and (4) spontaneous activity is stationary
and ergodic.

By averaging the data points, which are time locked to the stimulus pre-
sentation (cf. Oddball experiment), it is possible to filter out some signal (ERP)
of the noise (spontaneous activity). This way, the P300 component of the ERP
was the first potential discovered to vary in dependence on subject internal
factors, like attention and expectation, instead on physical characteristics (Sut-
ton et al., 1965). The amplitude of the P300 component is highly sensitive to the
novelty of an event and its relevance (surprising moment), so this component
is assumed to reflect the updating of the environmental model of the informa-
tion processing system (context updating, Donchin, 1981; Donchin and Coles,
1988). The disadvantage of the averaging method is the high number of tri-
als needed to reduce the signal-to-noise-ratio. This disadvantage is crucial for
example in clinical studies, studies with children and studies in which repeat-
ing a task would influence the performance. Moreover, several high frequency
structures are filtered out by using the averaging method. It is, therefore, de-
sirable to find new ways of analyzing event related activity on a single trial
basis. Applying the concepts of the RQA to electrophysiological data could be
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Figure 3.2: Localization of the electrodes on the head.

Table 3.2: Notation of the electrodes and their numbering as it is used in the
figures.

# Electr. # Electr. # Electr. # Electr. # Electr.

1 F7 2 FC5 3 F3 4 FZ 5 F4
6 FC6 7 F8 8 T7 9 CP5 10 C3

11 FCZ 12 C4 13 CP6 14 T8 15 P7
16 PZ 17 P3 18 CZ 19 P4 20 P8

one way of dealing with this problem.
For this study, we analyze measurements of an Oddball experiment. The

Oddball experiment studies brain potentials during a stimulus presentation
(acoustic stimulii were used here). For the experimental description and set-
tings see (cp. App. B, Marwan and Meinke, 2004). In the analysis of a set of 40
trials of ERP data for an event frequency of 90% (ERP90) and a second set of
31 trials for an event frequency of 10% (ERP10), the RQA measures DET and
L, and the newly introduced measures LAM and TT are computed (Marwan
and Meinke, 2004). The ERPs were measured at 25 electrodes (Fig. 3.2 and
Tab. 3.2). The classical method of studying such ERP data is averaging them
over many trials. Our aim is to study the single trials in order to find transi-
tions in the brain processes during unexpected stimulation. Due to the N100
and the P300 components in the data, the RPs show varying structures chang-
ing in time (Fig. 3.3). Diagonal structures and clusters of black points occur.
The nonstationarity of the data around the N100 and P300 causes extended
white bands along these times in the RPs. However, the clustered black points
around 300 ms occur in almost all RPs of the ERP10 data set. The application
of the measures of complexity to these ERP data discriminates the single trials
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Figure 3.3: ERP data for event frequencies of 90% (A) and 10% (B), and their
corresponding recurrence plots. For the lower event frequency (B) more clus-
ter of recurrence points occur at 100ms and 300ms and a white band marks
some transition in the process.

with a distinct P300 component resulting from a low surprise moment (high
frequent events) in favour of such trials with a high surprise moment (less fre-
quent events). The LAM is the most distinct parameter in this analysis. In the
ERP data the LAM reveals transitions from less laminar states to more lami-
nar states after the occurrence of the event and a transition from more laminar
states to less laminar states after approximately 400 ms. These transitions oc-
cur around bounded brain areas (parietal to frontal along the central axis). The
comparable measures DET and LAM as well as L and TT are quite different
in their amplitudes. There are also differences in time and brain location of the
found transitions.

These results show that the measures based on vertical RP structures make
the identification of transitions possible, which are not found by the classical
RQA measures. These newly proposed measures indicate transitions in the
brain processes into laminar states due to the surprising moment of observed
events.
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Figure 3.4: RQA measures for selected trials for event frequencies of 90% (A–
D) and 10% (E–H). The P300 component reflects the surprising moment and
can be detected in single trials by the measures LAM (G) and TT (H), which
base on the vertical structures in the RP. The measures based on diagonal struc-
tures, DET and L, are less apparent.
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3.2 Similarities Found with Cross Recurrence Plots

Cross recurrence plots can be used to study a similar time evolution of phase
space trajectories and hence to assess the similarity or interrelation between
the underlying processes. The following examples illustrate the functioning of
this technique on prototypical model systems as well as on natural data.

3.2.1 Finding of Nonlinear Interrelations

This application shows the ability to find nonlinear interrelations between two
processes (cp. App. C, Marwan and Kurths, 2002), where linear tests are not
able to find them. We demonstrate this on a paradigmatic system from stochas-
tic processes and nonlinear dynamics. We consider linear correlated noise (au-
toregressive process) which is nonlinearly coupled with the x-component of
the Lorenz system x(t) which is solved with an ODE solver for the standard
parameters σ = 10, r = 28, b = 8/3 and a time resolution of ∆t = 0.01
(Lorenz, 1963; Argyris et al., 1994). We use an autoregressive process yi of first
order and force it with the squared x-component of the Lorenz system,

yi = 0.86 yi−1 + 0.500ξi +κ x2
i , (3.1)

where ξ is Gaussian white noise and xn (x(t) → xi, t = i ∆t) is normalized to
standard deviation. The data length is 8 000 points. The coupling κ is realized
without any lag.

As expected, due to the nonlinear linkage the cross correlation analysis of x
and y does not reveal a significant linear correlation between these data series
(Fig. 3.5 A). However, the mutual information shows a strong dependence be-
tween x and y at a delay of 0.05 (Fig. 3.5 B). The CRP based measures RR∗ and
L∗ exhibit maxima at a lag of about 0.05 for RR+/ L+ and RR−∗ / L−∗ and ad-
ditionally at 0.45 and −0.32 for RR−∗ / L−∗ (Fig. 3.5 C, D). The maxima around
0.05 for the + and − measures are a clear sign of the nonlinear linkage between
the data. The delay of approximately 0.05 stems from the autocorrelation of
y and approximately corresponds to its correlation time ∆t/ ln 0.86 = 0.066.
Since the result is rather independent of the sign of the second data before the
embedding, the found interrelation is of the kind of an even function. A sig-
nificance test for this method has not yet been developed. We use here 500
realizations of the AR model in order to receive the distributions of the mea-
sures. The 2σ margins of these distributions can be used to assess the results.
Moreover, a surrogate test can be applied in order to estimate the significance
of the result. An example for such a surrogate test is presented in the next
application.
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Figure 3.5: (A) Crosscorrelation C(τ), (B) mutual information I(τ), (C) recur-
rence rate RR∗ and (D) average line length L∗ for the forced autoregressive
process and the forcing function; the curves represent the measures for one
realization as functions of the delay τ for a coupling κ = 0.2. In (C) and (D)
the solid lines show positive relation; the dashed lines show negative relation.
The gray bands mark the 2σ margin of the distributions of the measures gained
from 500 realizations. The lag τ and the average line length L∗ have units of
time.

Due to the rapid fluctuation of y the number of longer diagonal structures is
less. Therefore, measures based on these diagonal structures, especially DET∗,
do not work well with such heavily fluctuating data. However, we can infer
that the measures RR∗ as well as L∗ (though less significant for rapidly fluc-
tuating data) are suitable for finding the nonlinear relation between the con-
sidered data series x and y, where the linear analysis is not able to detect this
relation. Furthermore, this technique is applicable to rather short and nonsta-
tionary data, often appearing in geology. In the next subsection we will apply
this CRP method to palaeoclimatology data.

3.2.2 Investigation of ENSO in the Past

Data from geology are often characterized as short and nonstationary. The
unique character of outcrops or drilling cores does not usually allow to repeat
or refine a measurement. Therefore, data analysis of geological data is often
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confrontated with problems regarding the length, nonstationarity or gaps in
the data. In the previous application of CRPs we have seen that this method
can be used for this kind of data. Therefore, in this subsection the application
of CRPs will be used for the analysis of palaeoclimatology data that are of
short length and nonstationarity (cp. App. D, Marwan et al., 2003; Trauth et al.,
2003).

Higher variability in rainfall and river discharge could be of major impor-
tance in landslide generation in the northwestern Argentine Andes. A po-
tential cause of such variability is the El Niño/ Southern Oscillation (ENSO).
Annual layered deposits of a landslide-dammed lake in the Santa Maria Basin
(site El Paso, Province Salta, NW Argentina) with an age of 30 000 14C years
provide an archive of precipitation variability during this time. The annual
cycle of wet summers and dry winters caused significant changes in the lake’s
sedimentation. During the rainy season mainly ocher coloured silty sediments
were deposited; during the subsequent dry season a thin white layer consist-
ing of the skeletons of silica algae (diatoms) was deposited. Due to its white
colour, the diatomaceous layer can be used to identify single years in these
sediments. Recurring intense red colouration of the silty part of the annual
layers comes from reworked older sediments which are eroded and deposited
only during extreme rainfall events. Therefore, the intensity of red colour in
the varved deposits can be interpreted as a proxy for precipitation variation in
the Santa Maria Basin (Trauth and Strecker, 1999; Trauth et al., 2000). The more
intense red colouration is evidence of more precipitation during the rainy sea-
son. The estimate of the power spectrum of the red colour intensity reveals
significant peaks within the ENSO frequency band of two to four years, sug-
gesting an ENSO-like influence (Trauth et al., 2000). Because of the nonstation-
arity of these data (the sedimentation process in a lake is not stationary, which
results in nonstationary proxy variables for the in-lake processes) linear cor-
relation analysis is unsuitable. Therefore, the CRP analysis is applied to these
data.

Our research includes the quantification analysis of CRPs of an index data
series of the ENSO (Southern Oscillation Index, SOI) and the modern as well
as palaeoprecipitation data in order to compare the magnitude and causes of
rainfall variability in the NW Argentine Andes today and during the time of
enhanced landsliding around 30 000 14C years ago (Marwan et al., 2003; Trauth
et al., 2003). For the assessment of the modern ENSO influence on local rainfall
in NW Argentina, the monthly precipitation data from the three stations San
Salvador de Jujuy (JUY), Salta (SAL) and San Miguel de Tucuman (TUC) are
analyzed. These locations are influenced by different local winds; Jujuy and
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Figure 3.6: RRc∗ and Lc∗ measures of the cross recurrence plots between SOI and
precipitation in Tucuman (A, E), Salta (B, F), Jujuy (C, G) and palaeoprecipi-
tation (D, H). Extreme values reveal high similarity between the dynamics of
the rainfall and the ENSO. The dash-dotted lines are the empirical 2σ-bounds
from the distributions of an ensemble of data based on a 5th-order AR-model.

Salta mainly receive northeasterly and easterly moisture-bearing winds during
the summer rainy season whereas Tucuman is characterized by southerly and
south-westerly winds (Prohaska, 1976). An appended surrogate test provides
an evaluation of the results of the CRP analysis.

We find that the parameter RRc∗ of the CRPs between TUC and SOI has
small negative values which do not exceed the 2σ-bounds and do not show
preferences for a distinct lag. The parameter Lc∗ also has small values, but it
has rather small maxima and minima at delays of −1, 4 and 8 months. These
results indicate that the precipitation in Tucuman is not strongly influenced by
ENSO. If there is a weak influence, the rainfall will increase during El Niño
(Fig. 3.6 A, E). However, the analysis of JUY and SOI reveals clear positive
values around a lag of zero and negative values after 8 – 12 months, which
suggests a significant link between Jujuy rainfall and ENSO ( Fig. 3.6 C, G). The
measures for the analysis of SAL versus SOI show smaller maxima for a delay
of about zero and minima after a lag of 8 – 12 months. Therefore, we infer
a weaker link between Salta rainfall and ENSO (Fig. 3.6 B, F; the disrupted
minima in the Lc∗ parameter at around ten months is due to the short data
length and a resulting nonstationarity in the CRP). The measures for both SAL
and JUY exceed the 2σ-bounds.

The 30 000 14C year old precipitation data are not simply comparable with
present day data, because there is no information available about how to syn-
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chronize the rainfall records with modern climate indices. Therefore, we seek
the time window in these data showing the highest coincidence in the dynam-
ics using maximum values for RRc∗ and Lc∗ as the key criterion. The linear
correlation coefficients could be used to find such a sequence, but this results
in numerous ambigous possibilities. The complexity measures based on CRP
provide a differentiated search that also considers time based features of the
signal. This method reveals indeed a clearer result. The measures presented
herein are not the only measures used. To maintain clarity, the further mea-
sures are not presented in this application, although they are used to find the
sequence in the sediment data. Although the observed coincidence is not very
high, it yields the time section in the palaeoprecipitation record EP160 which
can be in best accordance with modern data. In our palaeoclimate data EP160
we find such a section represented by maximum and minima values for RRc∗
and Lc∗ for delays of about zero and ten months, similar to those found for JUY
and SAL (Fig. 3.6D, H). The RRc∗ and Lc∗ measures also exceed the 2σ-bounds.

The similarities between the time series of the modern rainfall data and the
palaeoprecipitation record from the lake sediments suggest that an ENSO-like
oscillation was active around 30 000 14C years ago (roughly corresponding to
34 000 cal. years BP), which corresponds with the results of the investigation of
Coccolithophores production (Beaufort et al., 2001). In the semiarid basins of
the NW Argentine Andes, the ENSO-like variation could have caused signifi-
cant fluctuations in local rainfall around 30 000 14C years ago similar to mod-
ern conditions. Together with generally higher moisture levels as indicated by
lake balance modeling results (Bookhagen et al., 2001) this mechanism could
help explain more frequent landsliding approximately 34 000 years ago in the
semiarid basins of the Central Andes. For the comparison of the past and
modern climate conditions, the CRP analysis has been used because a linear
correlation analysis would reveal ambiguous results.

3.3 Time Scale Alignment Based on

Cross Recurrence Plots

The CRP contains information about the time synchronization of data series
(in the following the terms synchronization and rescaling refers to the align-
ment of the time scales). This is revealed by the distorted main diagonal, the
LOS. A nonparametric rescaling function is provided by isolating this LOS
from the CRP and can be used for the re-alignment of the time scales of the
considered time series. I expect that this approach will open a wide range of
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Figure 3.7: Cross recurrence plot (gray) based on six normalized sediment
measures and an additional embedding dimension of m = 3 (τ = 1, ε = 0.05)
and line of synchronization (black line).

applications such as scale alignment and pattern recognition, for example in
geology, molecular biology and ecology.

3.3.1 Time Scale Alignment of Borehole Data

In this first application we consider geophysical measurements of two sedi-
ment cores from the Makarov Basin, in the central Arctic Ocean, PS 2178-3 and
PS 2180-2 (cp. App. E, Marwan et al., 2002a). The task is to align the data of
the PS 2178-3 core (data length N = 436) with the scale of the PS 2180-2 (data
length N = 251) in order to get a depth-depth-function which that to synchro-
nize both data sets.

The phase space trajectories are formed by the following normalized six
measures: low field magnetic susceptibility (κLF), anhysteretic remanent mag-
netization (ARM), ratio of anhysteretic susceptibility to κLF (κARM/κLF), rel-
ative palaeointensity (PJA), median destructive field of ARM (MDFARM) and
inclination (INC). Each measure is used as one component of the phase space
vector. However, this embedding can be combined with the time delay method
according to Takens (1981) in order to further increase the dimension of the
phase-space.

Using an embedding of m = 3 (absolute dimension is 3 × 6 = 18), τ = 1
and a recurrence criterion of FAN with ε = 0.05, the resulting CRP shows a
clear LOS and some clustering of black patches (Fig. 3.7). Black patches arise
whenever the variation in the data is smaller than the used vicinity threshold ε
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Figure 3.8: The ARM data are exemplary shown after alignment by wiggle
matching (A) and by automatic alignment (B) using the LOS from Fig. 3.7.
Plot (C) shows the reference data.

for a given time (plateau). The next step is to fit a nonparametric function (the
desired depth-depth-curve) to the LOS in this CRP (black curve in Fig. 3.7).
Different approaches can be considered for this procedure. However, they
could have to be chosen appropriately because they have a large effect on the
quality of the found LOS. In our example a two step algorithm is chosen that
is able to tend locally towards the direction of the centre of gravity of clustered
black points. A full explanation is given in Marwan et al. (2002a). With so
determined LOS we are able to align the scale of the PS 2178-3 core to that of
PS 2180-2 (Fig. 3.8).

The comparison of the CRP aligned geophysical measurements with the
conventional visual matching (wiggle matching) shows an acceptable relia-
bility level of the new method (Marwan et al., 2002a). The advantage is the
automatic, objective and multivariate alignment. Moreover, further attempts
exist to align geological data automatically. They either use parametrical ap-
proaches (minimal cost functions, Fourier series estimation of the mapping
function and others; Martinson et al., 1982; Brüggemann, 1992) or they have
to fit a large number of parameters and apply trial-and-error algorithms (se-
quence slotting; Thompson and Clark, 1989).
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3.3.2 Search for an Appropriate Sequence in Reference Data

In the following three applications of CRPs the possibility of finding an appro-
priate sequence in a given data series relating to a reference series (and vice
versa, respectively) is presented. For this task the LOS in the CRP must be
found.

Dating of a Geological Profile (Magnetostratigraphy)

From a sediment profile (Olguita profile, Patagonia, Argentina; Warkus, 2002)
a measurement of the palaeopolarity of the Earth’s magnetic field (along with
other measurements) is available. The starting point for any geological investi-
gation of such a profile is determining the time at which these sediments were
deposited. By applying the magnetostratigraphic approach and a geomagnetic
polarity reference with known time scale, the polarity measurements can be
used to determine a possible time scale for the profile. Cande and Kent (1995)
provide such a geomagnetic polarity reference, which covers the last 83 Myr.
The Olguita profile contains seven reversals. The polarity data consist of the
values one, for the polarity direction as today, and the values zero, for the
inverse polarity. Unfortunately, this data series is too short (only 16 measure-
ments) for a credible analysis. Nevertheless, for our purpose of demonstration
we will enlarge this data by interpolation. The Olguita profile is transformed
to an equidistant scale of 300 data points and the reference data is transformed
to an equidistant scale of 1 200 data points.

A CRP is created from these two data series by using an embedding di-
mension m = 4, a delay of τ = 6 and a neighbourhood criterion of FAN (30%
recurrence rate). Varying degrees of continuous lines between 21 and 16 Myr
BP and between 12 and 8 Myr BP occur in the CRP, which can be interpreted
as the desired LOS (Fig. 3.9). We will analyse six of these possibilities for the
LOS. The search for the potential LOS is conducted using the same algorithm
described in Marwan et al. (2002a). Moreover, we can evaluate the quality of
these potential LOS by introducing a quality factor that takes into considera-
tion the amount of gaps N◦ and black dots N• on this line

Q =
N•

N• + N◦
100%. (3.2)

A larger Q is a better LOS; Q = 100% stands for an absolute continuous
line. Moreover, the obtained LOS can be interpreted as the sedimentation rate
(Fig. 3.10). Abrupt changes in the sedimentation rate are not expected, thus,
the potential LOS should not change abruptly. As an evaluator for this crite-
rion we can use the averaged second derivative with respect to the time 〈∂2

t 〉.
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Polarity Reference (Cande & Kent, 1995)
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Figure 3.9: CRP between the polarity data of the Olguita profile and the refer-
ence data according to Cande and Kent (1995). In the polarity data the white
colour marks a polarity of the Earth’s magnetic field in the present, whereas
the black colour marks a reversal. Six potential LOS are marked with gray
lines (A–F, corresponding to the potential LOS given in Fig. 3.10).
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Figure 3.10: Potential LOS of the CRP presented in Fig. 3.9. They correspond
to the potential sedimentation rates of the Olguita profile and mark sequences
in the polarity reference, which match with the Olguita profile. Due to this
matching, the Olguita profile can be dated.
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Table 3.3: Possible ages of the Olguita profile, which are based on the found
potential LOS (Fig. 3.10) and characteristics of these potential LOS.

Plot Age (Myr) N• N◦ Q (%) 〈∂2
t 〉

A 19.4–21.4 345 23 93.8 5.5
B 16.7–20.3 407 43 90.4 12.5
C 16.5–18.9 351 15 95.9 5.0
D 14.4–17.8 392 16 96.1 20
E 8.1–12.6 482 16 96.8 23
F 7.9–11.1 399 13 96.8 18

The potential LOS differs slightly in the Q factor, but more in the occurrence
of abrupt changes in their slope (Fig. 3.10 and Tab. 3.3). The LOS in Fig. 3.10C
has the smallest 〈∂2

t 〉 and could be, therefore, a good LOS for the dating of the
Olguita profile. Regarding this result, the Olguita profile would have an age
between 16.5 and 18.9 Myr and an age-depth-relation as it is represented by
the possibility of a LOS in Fig. 3.10C. Warkus’ investigation reveals the same
result (Warkus, 2002), although he also mentioned that the dating based on the
polarity data is ambiguous.

I must mention that the stated results are only possible sequences and do
not lay claim to absolute correctness. It is rather a question of showing the po-
tentials of CRPs. In general, for such geological tasks as presented in the two
previous applications, the distance matrix (Eq. (2.11)) may be more appropri-
ate. Future development would have to to improve the search algorithm for
the LOS and to define an appropriate quality factor for the found LOS.

Looking for a Known Gene in a DNA String

Physiological processes are based on the interpretation of specific information
stored in the DNA molecules by a definite sequence of the nitrogenous bases
adenine (A), thymine (T), cytosine (C) and guanine (G). This information code
is called a gene. Three consecutive bases are needed for the coding of one
amino acid. A specific sequence of amino acids form a protein. The protein
coding sequences of the gene are denoted as exons.

The human genome is estimated to contain more than 100 000 genes of vari-
ous length (3 000 base pairs on average) and three billion base pairs. The genes
are distributed over various DNA molecules which form the chromosomes. A
DNA molecule does not consist solely of genes. Only around 10% of the hu-
man genome consists of genes. Moreover, the genes are usually not contin-
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Experimental DNA String
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Figure 3.11: A detail of the CRP between the human U44839 gene and a se-
quence from the X chromosome. The LOS marks the exons and the jumps in
the LOS mark the introns.

uous. They are interrupted by sequences that (probably) contain no informa-
tion. These sequences are called introns. Whereas a specific gene is the same for
all humans, the introns which fragment this gene differ greatly. These introns
as well as the huge length of the DNA sequences (the largest DNA sequence
known has more than 350 thousand base pairs) make the search for a specific
gene in a given DNA sequence rather difficult if not impossible. However,
gene sequencing is the fundamental method for discovering genes (Myers,
1991; Giegerich and Wheeler, 1996). A CRP provides an easy although com-
puting intensive method for finding a specific gene, given e. g. by a database,
in an experimental DNA string (similar algorithms can be found in literature,
e. g. Vihinen, 1988). The application of RPs to DNA sequences is not new. For
example, the RQA was applied to DNA sequences in order to study long-range
correlations in introns and intergenic regions (Frontali and Pizzi, 1999) and to
protein sequences in order to classify and compare special proteins (Giuliani
et al., 2000).

We will try to locate the gene U44839 (ubiquitin C-terminal hydrolase gene)
in a DNA sequence from the human X chromosome (genome data from the
Human Genome Browser, 2001, http://genome.cse.ucsc.edu). The gene
U44839 has a length of 3 167, and the used subsequence of the X chromosome
has a length of 16 363. Since the gene data are alpha coded, we have to sub-
stitute numbers for the letters (e. g. A → 0, C → 1, G → 2, T → 3). Taking
into account that a triplet of consecutive bases codes an amino acid, we use an
embedding dimension of three and an embedding delay of one. In the CRP
a shifted and interrupted LOS marks the location of the U44839 gene in the X
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chromosome sequence (Fig. 3.11). Each jump in the LOS marks the occurrence
of an intron in the DNA sequence.

Since DNA sequences are rather long, the visual inspection of CRPs is not
applicable. The computation and visualization of measures based on the diag-
onal lines within sub-CRPs can reduce the amount of nonsignificant informa-
tion. This procedure will be used in the next application. High values of, for
example, Lmax mean good matching. The position of the sub-CRP with a high
Lmax is associated with the location of the gene in the DNA sequence.

Speech Recognition

This last application completes the illustrations of the potentials of the CRP
analysis. We consider a typical problem of speech analysis, the recognition of
some spoken sentences with already present reference data. This reference
data can be single sounds or words. A large amount of studies regarding
speech recognition exist already (cf. Aubert, 2002; Huckvale and Fang, 2002).
Therefore, we will not claim that our method is the ultimate solution. There
may be better and faster methods for this task.

We analyze a german sentence which is given in the form of wave-form
data of 22.05 kHz and 41 251 data points (Fig. 3.12A). The task is to find a se-
lected word in this sentence. This word is provided as a reference vocabular
from another audio record (Fig. 3.12B, 22.05 kHz, 11 000 data points, spoken
by the same person). With the reference vocabular and the test sentence, we
create a CRP of the both data series by using an overembedding with m = 20
and τ = 5 (according to Matassini et al. (2002) this overembedding is used to
reduce noise as much as possible; overembedding is suitable here for our task
of sequence matching). Wave-form audio data have a distinct periodic nature
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Figure 3.12: Wave data of a german sentence used for this study (A) and a
reference pattern (B).
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Figure 3.13: (A) Variation Lvar of the length of the diagonal lines in the CRP
of the sentence and the reference vocabular presented in Fig. 3.12. In (B) only
the variations with Lvar > 9 ms are presented, which reveal the location of the
reference vocabular in the test sentence. Similar to CRPs, large, more or less
diagonal structures correspond to high concordance between the considered
sequences. The bowed diagonal oriented structure is caused by varying speech
tempo.

leading to periodic and pronounced diagonal lines in its RP or CRP. The used
high embedding provides a large amount of rather long, more or less diagonal
lines. Since speech data contain a large amount of data points, it is impossible
to inspect visually such a huge RP or CRP. The CRP of the data used here has
the size of 41 239 × 10 988. Therefore, we divide the CRP into several, over-
lapping sub-CRPs of the size 400 × 400 (shifted by 100 steps) and compute
the RQA measures for these sub-matrices. These measures can be presented
in a time-time plot analogously to the representation of the CRP. The high co-
incidence of periodic data corresponds with long diagonal lines. Therefore
we focus on that RQA measure that measures the maximal line length, Lmax.
This measure exhibits the highest values for the time between 0.2 and 1.1 s
in the sentence Fig. 3.13, which corresponds to the searched word in the sen-
tence. Analogous the LOS in a CRP, high coincidence causes line-like struc-
tures, which can be diagonal or bowed. The phonemes in the test sentence and
in the reference word have been spoken in a different tempo, which causes a
distortion of the line-like structures in the plot at about 1 s. Single phonemes,
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like “A”, can also be recognized by Lmax at different locations in the word.
Moreover, regions with low values of Lmax attract the attention. On the one

hand, these regions mark the occurrence of short breaks (e. g. “glottis stop”)
and on the other hand, they mark specific phonemes. These are phonemes
which are made in an alveolar1 and fricative manner, like “s”, “c” or “z” (ger-
man pronounciation) and cause distortions in the oscillations. This can be seen
with a recurrence quantification analysis, especially when we focus on an anal-
ysis of the distribution of the length of the diagonal lines. The variation of the
line lengths Lvar as well as the entropy ENTR reveal significantly the locations
of these phonemes (Fig. 3.14). Adopting the RQA to the specific manner of
speech production, this analysis may help to refer the phonemes of a spoken
sentence to a specific class and therefore to simplify appropriate search algo-
rithms for speech recognition.
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Figure 3.14: RQA measures L (B), Lmax (C) and ENTR (D) for two versions of
a german sentence and the first three letters of the alphabet. These measures
reveal the phonemes made in an alveolar and fricative manner. Embedding
was m = 3, τ = 6 and ε = 0.05 (FAN).

1Articulated with the tip or blade of the tongue against the ridge behind the upper teeth
(Source: http://www.xrefer.com).
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Chapter 4

Conclusion

In this study I have shown that recurrence plots (RPs) offer manifold possi-
bilities of application. RP based techniques can be modified and adopted to a
specific problem.

In this work different aspects of the application of RPs to time series have
been studied. Methodical extensions have been introduced for the univariate
and bivariate data analysis. Applications to model and real data have revealed
the applicability of these methodical extensions, especially where other meth-
ods fail, and have given new insights into the processes behind the consid-
ered data. Besides, a comprehensive overview of earlier introduced techniques
based on RPs is given.

4.1 Methodical Development

4.1.1 New Quantification Measures for Recurrence Plots

Recurrence plots (RPs) are binary plots which consist of black dots and black
diagonal as well as vertical lines. Classical measures of complexity based on
RPs use mainly the diagonal structures within an RP. These measures allow to
identify transitions between chaos and order. We have introduced new mea-
sures of complexity that also use the vertical structures in an RP, the laminarity,
the trapping time and the maximal vertical line length.

A vertical line structure occurs when a state does not change or changes
rather slowly. It seems that the state is trapped for some time, which is typ-
ical for laminar behaviour. The laminarity measures the occurrence of such
laminar states. The time length of the laminar states is measured by the other
two measures where the trapping time is defined as the average duration of a
laminar state. These new measures of complexity enable also identification of
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chaos-chaos transitions.
We have also shown the relations of these new measures to formerly intro-

duced quantification techniques.

4.1.2 Extension to Cross Recurrence Plots

The extension of the concept of recurrence plots to test for interrelations be-
tween two different phase space trajectories leads to cross recurrence plots
(CRPs). From the point of view of a CRP, an RP can be considered as a spe-
cial case of a CRP for two identical processes. However, if these two processes
become progressively different, typical structures of the RP, like the main di-
agonal (line of identity, LOI), will dissolve. A quantification of these structures
can be used in order to assess the variation or similarity between the dynamics
of both processes.

The CRP analysis provides another useful application. The orientation of
the line structures in the CRP is related to the time relation between the cor-
responding segments of the phase space trajectories. In the case of two suf-
ficiently similar processes with different time dilatations, the CRP shows a
bowed line of identity which is called line of synchronization (LOS). This line
corresponds to the transfer function between the time scales of the considered
time series. A nonparametrical function fitted to LOS can be used in order to
align the two processes to the same time scale.

Considering two processes, where epochs of the second are partly con-
tained in the first, the CRP facilitates finding the location of these epochs in
the first process.

4.2 Applications

The applications presented here are from different scientific disciplines and in-
clude various types of problems. Using RP based techniques, we have achieved
important results, whereas other methods were mostly not sufficient.

4.2.1 Heart Rate Variability Data

The application of the new introduced measures of complexity to heart rate
variability data of patients with fatal cardiac arrhythmias has revealed charac-
teristic patterns in the RPs before the onset of a ventricular tachycardia (VT).
The new measures of complexity allow to detect early signs of occurrence of a
life threatening cardiac arrhythmia. These result may be of importance for the
therapy of malignant cardiac arrhythmias.
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4.2.2 EEG Data During Stimulus Presentation

In the analysis of data of cognitive experiments (event related EEG data, Odd-
ball experiment) we have found components in the brain potential which are
typical for attention and expectation already from a single trial analysis. This
is an important progress because traditionally such components can only be
found after averaging an ensemble over a collection of EEG trials. This study
suggests further chaos-chaos transitions between laminar and non-laminar
states during event induced processes in the brain.

4.2.3 ENSO-like Influence on Pleistocene Precipitation

CRPs have been used for the search for an influence of the El Niño/ Southern
Oscillation (ENSO) on the climate in northwestern Argentina 34 000 years ago.
The CRP analysis of the colour variation of lake sediments as a proxy for the
palaeorainfall has uncovered similarities to the modern precipitation which
is influenced by the ENSO. From this result we can infer that an ENSO-like
oscillation was active at approximately 34 000 years ago.

4.2.4 Time Scale Alignment of Marine Geophysical Data

The characteristic shape of the LOS has been used for the time scale alignment
of geophysical borehole data from the central Arctic Ocean. The transfer func-
tion has been found by its non-parametrical fit to the LOS. The comparison
with the standard method of wiggle matching has shown the reliability of the
alignment based on CRPs.

4.2.5 Examples for the Search of Matching Sequences

Sequences of high concordance can be found with the help of CRPs. In a ge-
ological frame we have presented this technique in order to date a geological
profile with a reference whose time scale is known.

In a second example the CRP has been applied to a DNA sequence and a
known gene. The CRP has found and visualized the locations of the gene in
the DNA string. Diagonal lines and jumps therein have marked the occurrence
of exons and introns.

The last example has shown the applicability of CRPs to speech recogni-
tion. We could recognize a single word within a spoken sentence by compar-
ing it with a reference vocabular. Using the RQA, specific phonemes can be
classified regarding to their manner and location of production.
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4.3 Perspectives

Since recurrence plots offer various possibilities of application and become
more popular, numerous applications to different kind of data can be expected.

However, the theoretical background of RPs is not yet completely under-
stood. Promising studies are still under work by Thiel et al. (2003a) and Ro-
mano et al. (2003). For example, they evolve a new approach to cross recur-
rence. The development of a basic theory about the statistics of the quantifica-
tion measures based on RPs needs further research. This statistics have to con-
sider the embedding as well as the non-normal distribution of the measures
and is required to assess the significance of the measures. Since the measures
of complexity based on RPs depend on the embedding as well as the construc-
tion parameters, future work should further focus on possible pitfalls.

Regarding the theory of RPs, there is a further demand for research of the
perpendicular RPs and the RPs created with the criteria of a fixed amount of
nearest neighbours. The recurrence points in a perpendicular RP are closely
related to Poincaré sections and may be useful for the definition of further
invariant measures based on RPs.

There is still an open question in the context of the distribution of the
lengths of vertical structures in an RP. The lengths of these vertical structures
and thus their corresponding measures depend on the choice of the embed-
ding parameters. Especially if the product of the dimension and delay exceeds
the averaged length of vertical structures, these measures decrease abruptly
but do not vanish. After further increase of the embedding, these measures
may increase again. However, this relation is not yet studied in detail.

Future development considering optimization of the LOS searching algo-
rithm and definition of an improved quality factor of the found LOS is needed
in order to get a clear LOS even if the data are non-smooth. Moreover, the
influence of dynamical noise to the result needs a further study. Probably, this
problem may be bypassed by a suitable LOS searching algorithm too.

A forthcoming study will try to adopt the concepts of RPs to applications
of image processing. Moreover, the applicability to the analysis of spatio-
temporal data is an important task.

The independent component analysis may offer a further method for the
phase space reconstruction. The development of such embedding method
seems promising.
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Recurrence-plot-based measures of complexity and their application to heart-rate-variability data
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The knowledge of transitions between regular, laminar or chaotic behaviors is essential to understand the
underlying mechanisms behind complex systems. While several linear approaches are often insufficient to
describe such processes, there are several nonlinear methods that, however, require rather long time observa-
tions. To overcome these difficulties, we propose measures of complexity based on vertical structures in
recurrence plots and apply them to the logistic map as well as to heart-rate-variability data. For the logistic map
these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify
laminar states, i.e., chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the
latter transitions. Applying our measures to the heart-rate-variability data, we are able to detect and quantify the
laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an
event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.
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I. INTRODUCTION

Numerous scientific disciplines, such as astrophysics,
ology or geosciences, use data analysis techniques to g
insight into the complex processes observed in nature@1–3#,
which show generally a nonstationary and complex behav
As these complex systems are characterized by diffe
transitions between regular, laminar, and chaotic behavi
the knowledge of these transitions is necessary for un
standing the process. However, observational data of th
systems are typically rather short. Linear approaches of t
series analysis are often not sufficient@4,5# and most of the
nonlinear techniques~cf. @6,7#!, such as fractal dimensions o
Lyapunov exponents@7–10#, suffer from the curse of dimen
sionality and require rather long data series. The uncrit
application of these methods, especially to natural data,
therefore be very dangerous and it often leads to ser
pitfalls.

To overcome these difficulties other measures of co
plexity have been proposed, such as the Renyi entropies
effective measure complexity, the« complexity or the renor-
malized entropy@11,12#. They are mostly based on symbol
dynamics and are efficient quantities for characterizing m
surements of natural systems, such as in cardiology@13–15#,
cognitive psychology@16# or astrophysics@17–19#. In this
paper we focus on another type of measure of complex
which is based on the method of recurrence plots~RP’s!.
This approach has been introduced for the analysis of n
stationary and rather short data series@20–22#. Moreover, a
quantitative analysis of recurrence plots has been propo
to detect typical transitions~e.g., bifurcation points! occur-
ring in complex systems@23–25#. However, the quantities
introduced so far are not able to detect more complex tr
sitions, especially chaos-chaos transitions, which are
typical in nonlinear dynamical systems. Therefore in this
per we introduce measures of complexity based on re

*Electronic address: marwan@agnld.uni-potsdam.de
1063-651X/2002/66~2!/026702~8!/$20.00 66 0267
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rence plots, which allow us to identify laminar states a
their transitions to regular as well as other chaotic regime
complex systems. These measures make the investigatio
intermittency of processes possible, even if they are o
represented by short and nonstationary data series.

The paper is organized as follows. After a short review
the technique of recurrence plots and some measures
introduce other measures of complexity based on recurre
plots. After that we apply this approach to the logistic equ
tion and demonstrate the ability to detect chaos-chaos t
sitions. Finally, we apply this technique to heart-ra
variability data@26#. We demonstrate that by applying ou
proposed methods we are able to detect laminar phases
fore the onset of a life-threatening cardiac arrhythmia.

II. RECURRENCE PLOTS AND THEIR QUANTIFICATION

The method of RP was first introduced to visualize t
time dependent behavior of the dynamics of systems, wh
can be pictured as a trajectoryxW iPR n ( i 51, . . . ,N) in the
n-dimensional phase space@21#. It represents the recurrenc
of the phase space trajectory to a certain state, which
fundamental property of deterministic dynamical syste
@27,28#. The main step of this visualization is the calculatio
of the N3N matrix,

Ri , jªQ~« i2ixW i2xW j i !, i , j 51, . . . ,N, ~1!

where« i is a cutoff distance,i•i is a norm~e.g., the Euclid-
ean norm!, and Q(x) is the Heaviside function. The phas
space vectors for one-dimensional time seriesui from obser-
vations can be reconstructed by using the Taken’s time d
method,xW i5(ui ,ui 1t , . . . ,ui 1(m21)t) @7#. The dimensionm
can be estimated with the method of false nearest neigh
~theoretically,m52n11) @7,27#. The cutoff distance« i de-
fines a sphere centered atxW i . If xW j falls within this sphere, the
state will be close toxW i and thusRi , j51. These« i can be
either constant for allxW i @22# or they can vary in such a wa
©2002 The American Physical Society02-1
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that the sphere contains a predefined number of close s
@21#. In this paper a fixed« i and the Euclidean norm ar
used, resulting in a symmetric RP. The binary values inRi , j
can be simply visualized by a matrix plot with the colo
black ~1! and white~0!.

The recurrence plot exhibits characteristic large-scale
small-scale patterns that are caused by typical dynamica
havior @21,24#, e.g., diagonals~similar local evolution of dif-
ferent parts of the trajectory! or horizontal and vertical black
lines ~state does not change for some time!.

Zbilut and Webber have recently developed the recurre
quantification analysis~RQA! to quantify an RP@23–25#.
They define measures using the recurrence point density
the diagonal structures in the recurrence plot, therecurrence
rate, thedeterminism, themaximal length of diagonal struc
tures, the entropy, and thetrend. A computation of these
measures in small windows moving along the main diago
of the RP yields the time dependent behavior of these v
ables and, thus, makes the identification of transitions in
time series possible@23#.

The RQA measures are mostly based on the distribu
of the length of the diagonal structures in the RP. Additio
information about further geometrical structures such as
tical and horizontal elements are not included. Gao has th
fore recently introduced a recurrence time statistics that
responds to vertical structures in an RP@29,30#. In the
following, we extend this view on the vertical structures a
define measures of complexity based on the distribution
the vertical line length. Since we are using symmetric R
here, we will only consider the vertical structures.

III. MEASURES OF COMPLEXITY

We consider a pointxW i of the trajectory and the se
of its associated recurrence pointsSiª$xW k :Ri ,k

!

51;
kP@1, . . . ,N21#%. Denote a subset of these r
currence points siª $xW lPSi :(Ri ,l•Ri ,l 11) 1 (Ri ,l•Ri ,l 21)
.0; l P@1, . . . ,N#, Ri ,05Ri ,N11ª0%, which contains the
recurrence points forming the vertical structures in the RP
column i. In continuous time systems with high time resol
tion and with a not too small threshold«, a large part of this
setsi usually corresponds to the sojourn points described
Refs.@29,30#. Although sojourn points do not occur in map
the subsetsi is not necessarily empty. Next, we determine t
length v of all connected subsets$xW j¹si ;xW j 11 , . . . ,xW j 1v

Psi ;xW j 1v11¹si% in si . Pi(v)5$v l ; l 51,2, . . . ,L% denotes
the set of all occurring subset lengths insi and from
ø i 51

N Pi(v) we determine the distribution of the vertical lin
lengthsP(v) in the entire RP.

Analogous to the definition of the determinism@24,31#,
we compute the ratio between the recurrence points form
the vertical structures and the entire set of recurrence po

Lª

(
v5vmin

N

vP~v !

(
v51

N

vP~v !

, ~2!
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and call itlaminarity L. The computation ofL is realized for
v that exceeds a minimal lengthvmin . For maps we use
vmin52. L is the measure of the amount of vertical stru
tures in the whole RP and represents the occurrence of la
nar states in the system, without, however, describing
length of these laminar phases. It will decrease if the
consists of more single recurrence points than vertical st
tures,

Tª

(
v5vmin

N

vP~v !

(
v5vmin

N

P~v !

, ~3!

and call it astrapping time T. The computation also uses th
minimal lengthvmin as inL. The measureT contains infor-
mation about the amount and the length of the vertical str
tures in the RP.

Finally, we use the maximal length of the vertical stru
tures in the RP,

Vmax5max~$v l ; l 51,2, . . . ,L%!, ~4!

as a measure that is the analogue to the standard RQA
sureLmax @24#.

Although the distribution of the diagonal line lengths al
contains information about the vertical line lengths, the t
distributions are significantly different. In order to compa
the measures proposed with the standard RQA measures
apply them to the logistic map.

IV. APPLICATION TO THE LOGISTIC MAP

In order to investigate the potentials ofL, T, andVmax,
we first analyze the logistic map

xn115axn~12xn!, ~5!

especially the interesting range of the control parametea
P@3.5,4# with a step width ofDa50.0005. Starting with the
idea of Trullaet al. @23# to look for vertical structures, we ar
especially interested in finding the laminar states in cha
chaos transitions. Therefore we generate for each contro
rametera a separate time series. In the analyzed range oa
P@3.5,4# various regimes and transitions between them
cur, e.g., accumulation points, periodic, and chaotic sta
band merging points, period doublings, and inner and ou
crises@27,32,33#.

A useful tool for studying the chaotic behavior is the r
cursively formedsupertrack functions

si 11~a!5asi~a!@12si~a!#, s0~a!5
1

2
, ~6!

which represent the functional dependence of stable st
@33#. The intersection ofsi(a) with si 1 j (a) indicates the
occurrence of aj-period cycle and the intersection ofsi(a)
with the fixed point (121/a) of Eq. ~5! indicates the point of
an unstable singularity, i.e., laminar behavior~Fig. 1, inter-
2-2
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RECURRENCE-PLOT-BASED MEASURES OF . . . PHYSICAL REVIEW E 66, 026702 ~2002!
section points are marked with dotted lines!. For eacha we
compute a time series of the lengthN52000. In order to
exclude transient responses we use the last 1000 value
these data series in the following analysis.

We compute the RP after embedding the time series w
a dimension ofm51, a delay oft51, and a cutoff distance
of «50.1 ~in units of the standard deviations). Since the
considered example is a one-dimensional map,m51 is suf-
ficient. In general, a too small embedding leads to false
currences, that are expressed in numerous vertical struc
and diagonals from the upper left corner to the lower rig
corner@30#. In contrast, an overembedding should theore
cally not distort the reconstructed phase trajectory. Wher
false recurrences and overembedding do not strongly in
ence the measures based on diagonal structures@30#, the
measures based on vertical structures are, in general, m
more sensitive to the embedding. This is due to the fact
the embedding method causes higher-order correlation
the phase-space trajectory, which will be of course visible
the RP. A theoretical and more detailed explanation of t
effect within the analysis of RPs is in preparation and beyo
the scope of this paper. For the logistic map, however,
increasing ofm slightly amplifies the peaks of the vertica
based complexity measures~up to m53), but it does not
change the result significantly. The cutoff distance« is se-
lected to be 10% of the diameter of the reconstructed ph
space. Smaller values would lead to a better distinction

FIG. 1. ~a! Bifurcation diagram of the logistic map.~b! Low
ordered supertrack functionssi(a)( i 51, . . .,10) and the fixed
point of the logistic map 121/a ~dashed!. Their intersections rep-
resent periodic windows, band merging, and laminar states.
vertical dotted lines show a choosing of points of band merging
laminar behavior (a53.678, 3.727, 3.752, 3.791, 3.877, 3.927!.
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small variations~e.g., the range before the accumulati
point consists of small variations!. However, the recurrence
point density decreases in the same way and thus the s
tics of continuous structures in the RP soon becomes in
ficient. Larger values cause a higher recurrence point den
but a lower sensitivity to small variations.

A. Recurrence plots of the logistic map

For various values of the control parametera we obtain
RPs that already exhibit specific features~Fig. 2!. Periodic
states ~e.g., in the periodic window of length 3 ata
53.830) cause continuous and periodic diagonal lines in
RP of width of 1. There are no vertical or horizontal line
@Fig. 2~a!#. Band merging points and other cross points
supertrack functions@e.g., a53.720, Fig. 2~c!# represent
states with short laminar behavior and cause vertically
horizontally spread black areas in the RP. The band merg
at a53.679 causes frequent laminar states and therefore
of vertically and horizontally spread black areas in the
@Fig. 2~b!#. Fully developed chaotic states (a54) cause a
rather homogeneous RP with numerous single points
rare short diagonal or vertical lines@Fig. 2~d!#.

B. Complexity measures of the logistic map

Now we compute the known RQA measuresD, Lmax,
and in addition^L& ~average length of diagonal lines! and
our measuresL, Vmax, and T for the entire RP of each
control parametera. As expected, the known RQA measur
D, Lmax, and^L& clearly detect the transitions from chaot
to periodic sequences and vice versa@Figs. 3~a!, 3~c!, and
3~e!# @23#. However, it seems that one cannot get more
formation than the periodic-chaotic/ chaotic-periodic tran
tions. Near the supertrack crossing points~band merging
points included!, e.g.,a53.678, 3.791, 3.927, there are n
significant indications in these RQA measures. They clea
identify the bifurcation points ~periodic-chaotic/chaotic-
periodic transitions!, without, however, finding the chaos
chaos transitions and the laminar states.

Calculating the vertical based measuresL andT, we are
able to find the periodic-chaotic/ chaotic-periodic transitio
and the laminar states@Figs. 3~b! and 3~f!#. The occurrence
of vertical lines starts shortly before the band merging fro
two to one band ata53.678 . . . .

For smallera values the consecutive points jump betwe
the two bands and it is therefore impossible to obtain a la
nar behavior. A longer persistence of states is not poss
until all bands are merged. However, due to the finite ran
of neighborhood searching in the phase space, vertical l
occur before this point.

Vertical lines occur much more frequently at supertra
crossing points~band merging points included! than in other
chaotic regimes, which is revealed byL @cf. Fig. 3~b!, again,
supertrack crossing points are marked with dotted lines#. As
in the states before the merging from two to one band, v
tical lines are not found within periodic windows, e.g.,a
53.848. The mean of the distribution ofv is the introduced
measureT @Fig. 3~f!#. It will vanish if a is smaller than the
point of merging from two to one band.T increases at those

e
d

2-3
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FIG. 2. Recurrence plots~RPs! of the logistic map for various control parametersa, near different qualitative changes: 3-period windo
a53.830 ~a!; band merginga53.679 ~b!; supertrack intersectiona53.720 ~c!; and chaos~exterior crisis! a54 ~d!, with embedding
dimensionm51, time delayt51, and distance cutoff«50.1s.
026702-4
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FIG. 3. Selected RQA parametersD, Lmax, and^L& and the measuresL, Vmax, andT. The vertical dotted lines show some of the poin
of band merging and laminar behavior~cf. Fig. 1!, whereby not all of them have been marked. WhereasD ~a!, Lmax ~c!, and^L& ~e! show
periodic-chaotic/ chaotic-periodic transitions~maxima!, L ~b!, Vmax ~d!, andT ~f! exhibit in addition to those transitions~minima! chaotic-
chaotic transitions~maxima!. The differences betweenL andVmax are caused by the fact thatL measures only the amount of laminar state
whereasVmax measures the maximal duration of the laminar states. Although some peaks ofVmax andT are not at the dotted lines, the
correspond to laminar states~not all can be marked!.
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points where more low ordered supertrack functions
crossing@Fig. 3~f!#. This corresponds to the occurrence
laminar states. AlthoughVmax also reveals laminar states,
is quite different from the other two measures, becaus
gives the maximum of all of the durations of the lamin
states. However, periodic states are also associated with
ishing T and Vmax. Hence, the vertical length based me
sures yield periodic-chaotic/chaotic-periodic as well
chaos-chaos transitions~laminar states!.

We have also computedL, Vmax, andT for the logistic
map with transients using the same approach as describ
@23#. The qualitative statement of the measures is the sam
above.

V. APPLICATION TO HEART-RATE-VARIABILITY DATA

Heart-rate variability~HRV! typically shows a complex
behavior and it is difficult to identify disease specific patte
@34#. A fundamental challenge in cardiology is to find ear
02670
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signs of ventricular tachyarrhythmias~VT! in patients with
an implanted cardioverter-defibrillator~ICD! based on HRV
data @26,35–37#. Therefore standard HRV parameters fro
time and frequency domains@38#, parameters from symbolic
dynamics@13,14# as well as the finite-time growth rates@39#
were applied to the data of a clinical pilot study@26#. Using
two nonlinear approaches, we have recently found signific
differences between control and VT time series based ma
on laminar phases in the data before a VT. Therefore the
of this investigation is to test whether our RP approach
suitable to identify and quantify these laminar phases.

The defibrillators used in the study cited~PCD 7220/
7221, Medtronic! are able to store at least 1000 beat-to-b
intervals prior to the onset of VT~10-ms resolution!, corre-
sponding to approximately 9–15 min. We reanalyze th
intervals from 17 chronic heart failure ICD patients just b
fore the onset of a VT and at a control time, i.e., withou
following arrhythmic event. Time series including more th
2-5
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MARWAN, WESSEL, MEYERFELDT, SCHIRDEWAN, AND KURTHS PHYSICAL REVIEW E66, 026702 ~2002!
one nonsustained VT, with induced VTs, pacemaker acti
or more than 10% of ventricular premature beats are
considered in this analysis. Some patients had several
we finally had 24 time series with a subsequent VT and
respective 24 control series without a life-threatening
rhythmia. In order to analyze only the dynamics occurri

TABLE I. Results of maximal diagonal and vertical line leng
shortly before VT and at control time, and nonparametric Ma
Whitney U-test:p represents significance; * is forp,0.05; ** for
p,0.01; ns for not significant,p>0.05.

m « VT Control p

Maximal diagonal line lengthLmax

3 77 396.66253.8 261.56156.6 ns
6 110 447.66269.1 285.56160.4 *
9 150 504.66265.9 311.66157.2 *
12 170 520.76268.8 324.76180.2 *

Maximal vertical line lengthVmax

3 77 261.46193.5 169.26135.9 *
6 110 283.76190.4 179.56134.1 **
9 150 342.46193.6 216.16137.1 **
12 170 353.56221.4 215.16138.6 **
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just before a VT, the beat-to-beat intervals of the VT itself
the end of the time series are removed from the tachogra

We calculate all standard RQA parameters described
Ref. @24# as well as the measures laminarityL, trapping time
T, and maximal vertical line lengthVmax ~similar to the
maximal diagonal line lengthLmax) for different embedding
dimensionsm and nearest neighboring radii«. We find dif-
ferences between both groups of data for several of the
rameters mentioned above. However, the most significant
rameters areVmax and Lmax for rather large radii~Table I!.
The vertical line lengthVmax is more powerful in discrimi-
nating both groups than the diagonal line lengthLmax, as can
be recognized by the higherp values for Vmax ~Table I!.
Figure 4 gives a typical example of the recurrence plots
fore a VT and at a control time with an embedding of 6 a
a radius of 110. The RP before a life-threatening arrhythm
is characterized by large black rectangles (Vmax5242 here!,
whereas the RP from the control series shows only sm
rectangles (Vmax5117).

VI. SUMMARY

We have introduced three more RPs based measure
complexity, the laminarityL, the trapping timeT, and the
maximal length of vertical structures in the RP,Vmax. These

-

trol series

FIG. 4. Recurrence plots of the heart beat interval time series at a control time~a! and before a VT~b! with an embedding of 6 and a

radius of 110. The RP before a life-threatening arrhythmia is characterized by big black rectangles, whereas the RP from the con
shows only small rectangles.
2-6
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RECURRENCE-PLOT-BASED MEASURES OF . . . PHYSICAL REVIEW E 66, 026702 ~2002!
measures of complexity have been applied to the logi
map and heart-rate-variability data. In contrast to the kno
RQA measures@23,25#, that are able to detect transition
between chaotic and periodic states~and vice versa!, our
measures enable us to identify laminar states too, i.e., ch
chaos transitions. These measures are provided by the v
cal lines in recurrence plots. The occurrence of vertical~and
horizontal! structures is directly related to the occurrence
laminar states.

The laminarityL enables us generally to detect lamin
states in a dynamical system. The trapping timeT contains
information about the frequency of the laminar states a
their lengths. The maximal lengthVmax reveals information
about the time duration of the laminar states thus making
investigation of intermittency possible.

If the embedding of the data is too small, it will lead
false recurrences, which is expressed in numerous ver
structures and diagonals perpendicular to the main diago
Whereas false recurrences do not influence the meas
based on diagonal structures, the measures based on ve
structures are sensitive to it.

The application of these measures to the logistic equa
for a range of various control parameters has revealed po
of laminar states without any additional knowledge about
characteristic parameters or dynamical behavior of the s
cific systems. Nevertheless,L, Vmax, andT are different in
their magnitudes. Further investigations are necessary to
derstand all relations between the magnitudes ofVmax and
the recognized chaos-chaos transitions.

The application of these complexity measures to the I
d
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stored heart-rate data before the onset of a life-threate
arrhythmia seems to be very successful for the detection
laminar phases thus making a prediction of such VT p
sible. The differences between the VT and the control se
are more significant than in Ref.@26#. However, two limita-
tions of this study are the relatively small number of tim
series and the reduced statistical analysis~no subdivisions
concerning age, sex, and heart disease!. For this reason, our
results should to be validated on a larger database. Fur
more, this investigation could be enhanced for tachogra
including more than 10% ventricular premature beats.
conclusion, this study has demonstrated that the RQA ba
complexity measures could play an important role in the p
diction of VT events even in short term HRV time series.

Many biological data contain epochs of laminar stat
which can be detected and quantified by the RP based m
sures. We have demonstrated differences between the
sures based on the vertical and the diagonal structures
therefore we suggest the use of the method proposed in
paper in addition to the traditional measures.

A download of the Matlab implementation is available
www.agnld.uni-potsdam.de/˜ marwan
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Abstract

We present new measures of complexity and their application to
event related potential data. The new measures base on structures of
recurrence plots and makes the identification of chaos-chaos transitions
possible. The application of these measures to data from single-trials of
the Oddball experiment can identify laminar states therein. This offers
a new way of analyzing event-related activity on a single-trial basis.

1 Introduction

Neurons are known to be nonlinear devices because they become activated
when their somatic membrane potential crosses a certain threshold [Kan-
del et al., 1995]. This nonlinearity is one of the essentials in neural mod-
elling which leads to the sigmoidal activation functions of neural networks
[Amit, 1989]. The activity of large formations of neurons is macroscopically
measurable as the electroencephalogram (EEG) at the human scalp which
results from a spatial integration of postsynaptic potentials [Nunez, 1981].
However, it is an unsolved problem whether the EEG should be treated
as a time series stemming from a linear or a nonlinear dynamical system.
Applying nonlinear techniques of data analysis to EEG measurements has
a long tradition. Most of these efforts have been done by computing the
correlation dimension of spontaneous EEG [e. g. Babloyantz et al., 1985;
Rapp et al., 1986; Gallez and Babloyantz, 1991; Lutzenberger et al., 1992;
Pritchard and Duke, 1992]. Theiler et al. [1992] applied the technique of
surrogate data to correlation dimensions of EEG and reported that there is
no evidence of low-dimensional chaos but of significance for nonlinearity in
the data.

�email: marwan@agnld.uni-potsdam.de
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While correlation dimensions are only well defined for stationary time se-
ries generated by a low-dimensional dynamical system moving around an
attractor, these measures fail in investigating event-related brain poten-
tials [ERPs, Sutton et al., 1965] since they are nonstationary by definition.
Traditionally, ERP waveforms are determined by computing an ensemble
average over a collection of stimulus time locked EEG trials. This is based
on the following assumptions: (1) the presentation of stimuli of the same
kind is followed by the same sequence of processing steps, (2) these pro-
cessing steps always lead to activation of the same brain structures, (3)
this activation always elicits the same pattern of electrophysiological activ-
ity, which can be measured at the scalp [Rösler, 1982] and (4) spontaneous
activity is stationary and ergodic [beim Graben et al., 2000].

By averaging the data-points time-locked to the stimulus presentation
(cf. Oddball experiment) it is possible to filter out the signal (ERP) of the
noise (spontaneous activity). In the next step the functional significance
of a component is assessed. Antecedent conditions of the occurrence of a
component and variables, which influence its parameters are defined. Now
the commonalities of these factors are identified. The generalization of all
empirically found influencing factors leads to a more abstract cognitive the-
ory of the functional meaning of a event-related potential component and
makes it usable for the validation of models of cognitive processes.

The disadvantage of the averaging method is the high number of trials
needed to reduce the signal-to-noise-ratio [Kutas and Petten, 1994]. This
is crucial for example for clinical studies, for studies with children and for
studies, in which repeating a task would influence the performance. So it is
desirable to find new ways of analyzing event-related activity on a single-
trial basis. Applying nonlinear methods to electrophysiological data could
be one way of dealing with this problem.

To compute dimensions of ERPs, Molnár et al. [1995] used the pointwise
dimensions and reported a drop of the pointwise dimension as a function
of time corresponding to the P300 component observed in the Oddball ex-
periment. Recently, concepts of information theory have been introduced to
analyse ERPs. On one hand this is the wavelet entropy of Quiroga et al.
[2001] and on the other hand symbolic dynamics of EEG and ERP [beim
Graben et al., 2000; Frisch et al., 2002; Steuer, 2002; Schack, 2002].

A further promising approach is the recurrence quantification analysis (RQA),
which is based on the quantification of the diagonal oriented structures in
recurrence plots [RPs, Webber Jr. and Zbilut, 1994; Zbilut and Webber
Jr., 1992]. The RQA was broadly applied in a wide field of the analysis of
physiological data [e. g. Casdagli, 1997; Faure and Korn, 1998; Thomasson
et al., 2001; Marwan et al., 2002]. The important advantage of methods
based on the quantification of RPs is that the required data length can be
relatively short. However, the measures of the classical RQA are only able
to recognize transitions between periods and chaos and vice versa [Trulla
et al., 1996]. In this work, we will use recently introduced additional mea-
sures based on RPs in order to find chaos-chaos transitions in physiological
data. These new measures use the vertical structures in the RP and are
able to identify laminar states [Marwan et al., 2002].
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In the first section we will give a short introduction into RPs and their
quantification analysis. In the next section we will introduce the new mea-
sures and finally we will apply them to event related potential data gained
from the Oddball experiment.

2 Recurrence Plots and Their Quantification

The method of recurrence plots (RP) was introduced to visualize the time
dependent behavior of the dynamics of systems, which can be pictured as a
trajectory in the phase space [Eckmann et al., 1987]. It represents the re-
currence of the m-dimensional phase space trajectory ~xi 2 Rm (i = 1; : : : ; N ,
time discrete) to a certain state. The main step of this visualization is the
calculation of the N �N -matrix

Ri; j := �("i � k~xi � ~xjk); i; j = 1 : : :N; (1)

where "i is a state dependent cut-off distance, k � k is the norm of vectors, �
is the Heaviside function and N is the number of states. The phase space
vectors for one-dimensional time series ui from observations can be recon-
structed with the Taken’s time delay method ~xi = (ui; ui+� ; : : : ; ui+(m�1) � )
with dimension m and delay � [Kantz and Schreiber, 1997]. The recurrence
plot exhibits characteristic large-scale and small-scale patterns which are
caused by typical dynamical behavior [Eckmann et al., 1987; Webber Jr.
and Zbilut, 1994], e. g. diagonals (similar local time evolution of different
parts of the trajectory) or horizontal and vertical black lines (state does not
change for some time).

Zbilut and Webber have developed the recurrence quantification analysis
(RQA) to quantify an RP [Webber Jr. and Zbilut, 1994; Zbilut and Webber
Jr., 1992]. They defined measures using the recurrence point density and
diagonal structures in the recurrence plot, the recurrence rate RR (den-
sity of recurrence points), the determinism DET (ratio of recurrence points
forming diagonal structures to all recurrence points), the maximal length of
diagonal structures Lmax (or their averaged length L), the Shannon entropy
ENT of the distribution of the diagonal lengths and the trend TREND (pal-
ing in the RP). The computation of these measures in shifted windows along
the main diagonal of the RP enables one to find characteristic excursions of
the trajectory in the phase space of the considered systems.

Trulla et al. have applied these measures in order to find transitions in
dynamical systems [Trulla et al., 1996]. They have showed, that the RQA
is able to find transitions between chaos and order (periodical states). But
they could not find the chaos-chaos transitions.

3 Laminarity and Trapping Time

We have recently introduced two additional measures which are based on
the vertical structures in the RP [Marwan et al., 2002]. We define these
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measures analogous to the definition of DET and L, but we consider the
distribution P (v) of the length of the vertical structures in the RP.

First, the laminarity LAM

LAM :=

PN

v=2 vP (v)
PN

v=1 vP (v)
; (2)

is the ratio of recurrence points forming vertical structures to all recurrence
points and represents the probability of occurrence of laminar states in the
system, but it does not describe the length of these laminar phases. It will
decrease if the RP consists of more single recurrence points than vertical
structures.

Next, the trapping time TT

TT :=

PN

v=2 vP (v)
PN

v=2 P (v)
; (3)

is the averaged length of the vertical structures. The measure TT contains
information about the amount and the length of the laminar phases.

The difference between these measures and the traditional RQA measures
is their ability to find transitions between chaos and chaos [Marwan et al.,
2002]. For example, such transitions can be found in the logistic map
xn+1 = a xn (1� xn) with increasing control parameter a 2 [0; 4] and xn 2
[0; 1] � R. For such trajectories x(a) which contain laminar states (e. g. a =
3:678; 3:791; 3:927), LAM and TT show pronounced maxima (Fig. 1). The
application of these measures to heart rate variability data, has shown,
that they are able to detect and quantify laminar phases before a life-
threatening cardiac arrhythmia and, thus, to enable a prediction of such
an event [Marwan et al., 2002]. These findings can be of importance for the
therapy of malignant cardiac arrhythmias.

In the next section we will apply this extended RQA to physiological data.

4 Event Related Potentials

4.1 The Oddball experiment

As mentioned in the Introduction, the Oddball experiment studies brain
potentials during a stimulus presentation.

The measurement of the EEG was done with 31 electrodes/ channels (Tab. 1).
The first 25 electrodes were localized as shown in Figure 2; the others were
reference electrodes. The sample interval for the measurements was 4 ms.

Probands were seated in a dimly lit room in front of a monitor and were in-
structed to count tones of high pitch. Each subject was tested in nine blocks.
The blocks varied in the probability of occurrence of the higher tones from
10 to 90 %. Each block contained at least 30 target tones. Response was
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Figure 1: Laminarity (B) and trapping time (C) of time series gained from
the logistic map for various control parameters (A). These measures reveal
laminar and intermittent states. The vertical dotted lines show a choosing
of points of band merging and laminar behaviour (a = 3:678, 3:727, 3:752,
3:791, 3:877, 3:927). The length of the data were N = 1000 and the embed-
ding parameters were m = 1, � = 1 and " = 0:1.

5



F7

FC5
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C3

FCZ

C4

CP6
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P7 PZP3

CZ
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OZ
POZPO3

CPZ

PO4

Figure 2: Localization of the electrodes on the head.

Table 1: Notation of the electrodes and their numbering as it is used in the
figures (electrodes 26–31 are reference electrodes).

# Electrode # Electrode
1 F7 14 T8
2 FC5 15 P7
3 F3 16 PZ
4 FZ 17 P3
5 F4 18 CZ
6 FC6 19 P4
7 F8 20 P8
8 T7 21 OZ
9 CP5 22 POZ

10 C3 23 PO3
11 FCZ 24 CPZ
12 C4 25 PO4
13 CP6
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given in a three alternative choice (using cursor keys of the keyboard). Dur-
ing the test, the EEG was recorded. The stimuli were computer-generated
beeps of 100 ms length. Tones were either high (1400 Hz) or low (1000 Hz).
They were presented with an interstimulus interval of 1000 ms.

After computing event-related voltage averages for the experimental ma-
nipulations (10 % up to 90 % target probability) one can observe a P300
ERP component whose amplitude is anti-correlated to the probability of
the stimuli (surprise ERP, Fig. 3).
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Figure 3: Mean event related potentials for event frequencies of 90 % (left,
40 trials) and 10 % (right, 31 trials). The N100 and P300 components are
well pronounced for the frequencies of 10 %. The lower plots show the ERP
of selected electrodes. The reference of the electrode numbers is given in
Table 1.

The P300 component of the ERP was the first potential discovered to vary
in dependence on subject-internal factors like attention and expectation in-
stead of physical characteristics [Sutton et al., 1965]. The amplitude of the
P300 component is highly sensitive to novelty of an event and its relevance.
So this component is assumed to reflect the updating of the environmental
model of the information processing system [context updating, Donchin,
1981; Donchin and Coles, 1988].

4.2 Data analysis

Our focus will be directed to the ERP data of two extreme event proba-
bilities. Henceforth, the time (measured in ms) is denoted as t, the trial
number as i and the electrode as e (the allocation of the electrode numbers
with their notion, see Fig. 2).
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The first set ERP90 contains 40 trials of ERP data for an event frequency of
90 % and the second set ERP10 contains 31 trials for an event frequency of
10 %. Both data sets can be rather well discriminated in the N100 and P300
components by the average over all trials (Fig. 3). As expected, both com-
ponents have increased for lower event probabilities (ERP10). The maxima
of the P300 are located around the central and central-parietal electrodes.
However, the single trials do not obtain such a clear result. The P300 com-
ponent is only well pronounced in 15 trials. When the single trials are
observed, then extreme values can also occur in the ERP90 data and van-
ish in the ERP10 data (Fig. 4). We applied also a statistical variance-based
T-test to the single trial ERP data. However, this method could also not
clearly distinguish the single trials.
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Figure 4: Event related potentials for selected trials of the event frequen-
cies of 90 % (left) and 10 % (right). Both, ERP10 and ERP90 of single trials
can be strongly or weakly pronounced, respectively, which makes their dis-
crimination difficult. The reference of the electrode numbers are given in
Table 1.

The recurrence quantification analysis (RQA) is based on the structures
obtained by recurrence plots (RPs). The RPs were firstly computed for the
means of ERP90 and ERP10 over all trials and then for the single trials.
This was done with the embedding parameters m = 3, � = 3 and " = 10%
(fixed amount of nearest neighbours). The embedding parameters were es-
timated by using the standard methods false nearest neighbours (dimen-
sion) and mutual information (delay) [Kantz and Schreiber, 1997]. Due
to the N100 and the P300 components in the data, the RPs show varying
structures changing in time (Fig. 5). Diagonal structures and clusters of
black points occur. The nonstationarity of the data around the N100 and
P300 causes extended white bands along these times in the RPs. However,
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the clustered black points around 300 ms occur in almost all RPs of the
ERP10 data set.

−200 0 200 400 600 800 1000

−5

0

5

Time [ms]

E
R

P

ERP90, trial 15 (CPZ)

−200 0 200 400 600 800 1000

−5

0

5

Time [ms]

E
R

P

ERP10, trial 19 (CPZ)

ERP90, trial 15 (CPZ)

Time [ms]

T
im

e 
[m

s]

−200 0 200 400 600 800
−200

0

200

400

600

800

ERP10, trial 19 (CPZ)

Time [ms]

T
im

e 
[m

s]

−200 0 200 400 600 800
−200

0

200

400

600

800

Figure 5: ERP data for event frequencies of 90 % (upper left) and 10 % (up-
per right), and their corresponding recurrence plots (lower plots). For the
lower event frequency, more cluster of recurrence points occur at 100ms and
300ms.

The RQA was computed from the RPs of ERP90 and ERP10 for the single
trials, in sliding windows over the RPs (which have the dimension m = 3)
with a length of 240 ms and with a shifting step of 8 ms. This window
length corresponds with a data length of 60 values.

The mean of all RQA variables of ERP10 reveal typical structures in the
data (Fig. 6, right column). They indicate the transitions corresponding
to the N100 and P300 components around the central electrodes. The RQA
variables for the ERP90 do not reveal these transitions (Fig. 6, left column).
The onset of the increasing of the parameter is about 120 ms before the
event. This is due to the windowed analysis of the RPs (240 ms windows).
We have chosen the middle of the RP window for the time, what results in
a 120 ms earlier onset of the RQA variables.

The four RQA variables are quite different, especially in their amplitude.
For ERP10, LAM and TT are the best pronounced parameter and have two
distinct maxima at some electrodes; DET and L reveal these maxima at
these electrodes too, but are lesser pronounced (Fig. 6). These maxima occur
at the transition around 100 ms and 300 ms after the event and occur at the
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Figure 6: Averaged RQA measures for the ERP data of both event frequen-
cies (averaged over all trials). Whereas the measures do not reveal any
transitions in the ERP90 data, they clearly recognize the transitions for
the ERP10 data.
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electrodes F3, F4, FZ, C3, FCZ, PZ, POZ and PO3. Differences between the
various transitions found by these measures also occur in time and brain
locations (electrodes). But, the study was not detailed enough in order to
give reliable results.

The analysis of the single trials achieves similar results (Figs. 7 and 8 show
the results for selected trials). The LAM clearly found the N100 and P300
components for ERP10 in 26 trials (of 31), but not for the ERP90 trials. The
other measures have lesser maxima and, thus, are not suitable for such
recognition.

This result indicates that our introduced measures of complexity (espe-
cially LAM ) are able to recognize transitions in brain potentials, which are
caused by e. g. stimulative events. These transitions can be found in the
single trials, which is an improvement to the classical method of averaging
all observations.

5 Summary

We have applied an extended recurrence quantification analysis (RQA) to
physiological event related potential data (ERP). The classical RQA con-
sists of measures which are mainly based on diagonal structures in the
recurrence plots (RPs), e. g. the determinism (DET ), which is the ratio of
recurrence points located on connected diagonal structures in the RP, and
the averaged diagonal line length (L). We have extended the RQA with
two recently introduced measures, the laminarity (LAM ) and the trapping
time (TT ). These measures are analogously defined as DET and L, but pro-
vided by the vertical structures in recurrence plots. Whereas the classical
RQA enables the identification of period-chaos transitions, the new mea-
sures make the identification of chaos-chaos transitions and laminar states
possible.

The classical method to study ERP data is to average them over many trials.
Our aim was to study the single trials in order to find transitions in the
data.

The application of the extended RQA to ERP data has discriminated the
single trials with a distinct P300 component due to a high surprise moment
(less frequent events) against such trials with a low surprise moment (high
frequent events). Considering the raw ERP10 data, the P300 component
can only be found in the half of all trials. Also a statistical variance test
fails to distinguish cleary the trials. The LAM is the most pronounced pa-
rameter in this analysis. It measures the ratio of recurrence points located
on connected vertical structures in an RP. This structures correspond with
laminarity within the underlying process. In the ERP data, the LAM re-
veals transitions from less laminar states to higher laminar states after
the occurrence of the event and a transition from higher laminar states
to less laminar states after about 400 ms. These transitions occur around
bounded brain areas (parietal to frontal along the central axis). The com-
parable measures DET / LAM and L/ TT are quite different in their am-
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Figure 7: RQA measures for selected single trials and the central-parietal
electrode (black). The trial-averaged RQA measures for the same electrode
is shown in blue (the light blue band marks the 95 % significance interval).
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plitude. There should also be differences in time and brain location of the
found transitions.

These results show that the measures based on vertical RP structures make
the identification of transitions possible, which are not found by the clas-
sical RQA measures. They indicate transitions in the brain processes into
laminar states due to the surprising moment of observed events.

A future work will be concerned with the development of a statistical eval-
uation of these results. Furthermore, this investigation has to be extended
to ERP data gained from other frequent events and a detailed study of the
comparable measures DET / LAM and L/ TT should give hints about the
different transitions in the brain processes.
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Abstract

We use the extension of the method of recurrence plots to cross recurrence plots (CRP) which enables a nonlinear analysis
of bivariate data. To quantify CRPs, we develop further three measures of complexity mainly basing on diagonal structures in
CRPs. The CRP analysis of prototypical model systems with nonlinear interactions demonstrates that this technique enables to
find these nonlinear interrelations from bivariate time series, whereas linear correlation tests do not. Applying the CRP analysis
to climatological data, we find a complex relationship between rainfall and El Niño data.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A major task in bi- or multivariate data analysis
is to compare or to find interrelations in different
time series. Often, these data are gained from natural
systems, which show generally nonstationary and
complex behaviour. Furthermore, these systems are
often observed by very few measurements providing
short data series. Linear approaches of time series
analysis are often not sufficient to analyze this kind
of data. In the last two decades a great variety of
nonlinear techniques has been developed to analyze
data of complex systems (cf. [1,2]). Most popular

* Corresponding author.
E-mail address:marwan@agnld.uni-potsdam.de

(N. Marwan).

are methods to estimate fractal dimensions, Lyapunov
exponents or mutual information [2–5]. However,
most of these methods need long data series. The
uncritical application of these methods especially to
natural data often leads to pitfalls.

To overcome the difficulties with nonstationary and
rather short data series, the method ofrecurrence plots
(RP) has been introduced [6–8]. An additional quan-
titative analysis of recurrence plots has been devel-
oped to detect transitions (e.g., bifurcation points) in
complex systems [9–12]. An extension of the method
of recurrence plots to cross recurrence plots enables
to investigate the time dependent behaviour of two
processes which are both recorded in a single time se-
ries [13,14]. The basic idea of this approach is to com-
pare the phase space trajectories of two processes in
the same phase space. The aim of this Letter is to de-
velop further new measures of complexity, which are

0375-9601/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(02)01170-2
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based on cross recurrence plots and to evaluate the
similarity of the considered systems. This nonlinear
approach enables to identify epochs where there are
linear and even nonlinear interrelations between both
systems.

Firstly, we give an overview about recurrence plots
and cross recurrence plots and, than, we develop
further new measures of complexity. Lastly, we apply
the method to two model systems and to natural
data.

2. Recurrence plot

The recurrence plot (RP) is a tool in order to vi-
sualize the dynamics of phase space trajectories and
was firstly introduced by Eckmann et al. [7]. Follow-
ing Takens’ embedding theorem [15], the dynamics
can be appropriately presented by a reconstruction of
the phase space trajectory�x(t) from a time seriesuk

(with a sampling time∆t) by using an embedding di-
mensionm and a time delayτ

(1)

�x(t) = �xi = (ui, ui+τ , . . . , ui+(m−1)τ ), t = i∆t.

The choice ofm and τ are based on standard meth-
ods for detecting these parameters like method of
false nearest neighbours (form) and mutual informa-
tion (for τ ), which ensures the entire covering of all
free parameters and avoiding of autocorrelation ef-
fects [2].

The recurrence plot is defined as

(2)Ri,j = Θ
(
εi − ∥∥�xi − �xj

∥∥)
,

whereεi is a predefined cut-off distance,‖ · ‖ is the
norm (e.g., the Euclidean norm) andΘ(x) is the Heav-
iside function. The valuesone and zero in this ma-
trix can be simply visualized by the colours black and
white. Depending on the kind of the application,εi
can be a fixed value or it can be changed for eachi

in such a way that in the ball with the radiusεi a pre-
defined amount of neighbours occurs. The latter will
provide a constant density of recurrence points in each
column of the RP. Such a RP exhibits characteristic
large-scale and small-scale patterns which are caused
by typical dynamical behavior [7,10,12], e.g., diago-
nals (similar local evolution of different parts of the
trajectory) or horizontal and vertical black lines (state

does not change for some time). A single recurrence
point, however, contains no information about the state
itself.

As a quantitative extension of the method of re-
currence plots, therecurrence quantification analy-
sis (RQA) was introduced by Zbilut and Webber [10,
11]. This technique defines several measures mostly
based on diagonal oriented lines in the recurrence
plot: recurrence rate, determinism, maximal length
of diagonal structures, entropy and trend. The re-
currence rateis the ratio of all recurrent states (re-
currence points) to all possible states and is there-
fore the probability of the recurrence of a certain
state. Stochastic behaviour causes very short diago-
nals, whereas deterministic behaviour causes longer
diagonals. Therefore, the ratio of recurrence points
forming diagonal structures to all recurrence points
is called thedeterminism(although this measure does
not really reflect the determinism of the system). Di-
agonal structures show the range in which a piece of
the trajectory is rather close to another one at dif-
ferent time. Thediagonal lengthis the time span
they will be close to each other and their mean
can be interpreted as the mean prediction time. The
inverse of the maximal line length can be inter-
preted to be directly related with the maximal pos-
itive Lyapunov exponent [7,9,16]; in this interpre-
tation it is assumed that the considered system is
chaotic and has no stochastic influences. Since real
(natural) systems are always affected by noise, we
suggest that this measure has to be interpreted in
a more statistical way, for instance, as a predic-
tion time. However, if we consider a chaotic sys-
tem, the maximal positive Lyapunov exponent is
much more reflected in the distribution of the line
lengths. Theentropy is defined as the Shannon en-
tropy in the histogram of diagonal line lengths. Sta-
tionary systems will deliver rather homogeneous re-
currence plots, whereas nonstationary systems cause
changes in the distribution of recurrence points in
the plot visible by brightened areas. For example,
a simple drift in the data causes a paling of the
recurrence plot away from the main diagonal to
the edges. The parametertrend measures this ef-
fect by diagonal wise computation of the diago-
nal recurrence density and its linear relation to the
time distance of these diagonals to the main diago-
nal.
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3. Cross recurrence plot

Analogous to Zbilut et al. [13], we will use the
recently expanded method of recurrence plots to the
method ofcross recurrence plots, which compares the
dynamics represented in two time series. Herein, both
time series are simultaneously embedded in the same
phase space. The test for closeness of each point of
the first trajectory�xi (i = 1, . . . ,N ) with each point
of the second trajectory�yj (j = 1, . . . ,M) results in
a N × M array CRi,j = Θ(ε − ‖�xi − �yj‖) called
the cross recurrence plot (CRP). Visual inspection
of CRPs already reveals valuable information about
the relationship between both systems. Long diagonal
structures show similar phase space behaviour of both
time series. It is obvious, that if the difference of both
systems vanishes, the main diagonal line will occur
black. An additional time dilatation or compression of
one of these similar trajectories causes a distortion of
this diagonal line [14]. In the following, we suppose
that both systems do not have differences in the time
scale and have the same lengthN , hence, the CRP is
a N × N array and an increasing similarity between
both systems causes a raising of the recurrence point
density along the main diagonal until a black straight
main diagonal line occurs (cf. Fig. 3). Finally, the
CRP compares the considered systems and allows us
to benchmark their similarity.

4. Complexity measures based on cross
recurrence plots

Next, we will define some modified RQA measures
for quantifying the similarity between the phase space
trajectories. Since we use the occurrence of the more
or less discontinuous main diagonal as a measure
for similarity, the modified RQA measures will be
determined for each diagonal line parallel to the main
diagonal, hence, as functions of the distance from the
main diagonal. Therefore, it is also possible to assess
the similarity in the dynamics depending on a certain
delay.

We analyze the distributions of the diagonal line
lengthsPt(l) for each diagonal parallel to the main di-
agonal. The indext ∈ [−T , . . . , T ] marks the number
of the diagonal line, wheret = 0 marks the main diag-
onal,t > 0 the diagonals above andt < 0 the diagonals

below the main diagonal, which represent positive and
negative time delays, respectively.

The recurrence rateRRis now defined as

(3)RR(t) = 1

N − t

N−t∑

l=1

lPt (l),

and reveals the probability of occurrence of similar
states in both systems with a given delayt . A high
density of recurrence points in a diagonal results in a
high value ofRR. This is the case for systems whose
trajectories often visit the same phase space regions.

Analogous to the RQA the determinism

(4)DET(t) =
∑N−t

l=lmin
lPt (l)

∑N−t
l=1 lPt (l)

,

is the proportion of recurrence points forming long
diagonal structures of all recurrence points. Stochastic
as well as heavily fluctuating data cause none or only
short diagonals, whereas deterministic systems cause
longer diagonals. If both deterministic systems have
the same or similar phase space behaviour, i.e., parts
of the phase space trajectories meet the same phase
space regions during certain times, the amount of
longer diagonals increases and the amount of smaller
diagonals decreases.

The average diagonal line length

(5)L(t) =
∑N−t

l=lmin
lPt (l)

∑N−t
l=lmin

Pt (l)
,

reports the duration of such a similarity in the dynam-
ics. A high coincidence of both systems increases the
length of these diagonals.

High values ofRR represent high probabilities of
the occurrence of the same state in both systems, high
values ofDET andL represent a long time span of
the occurrence of a similar dynamics in both systems.
WhereasDET andL are sensitive to fastly and highly
fluctuating data,RRmeasures the probabilities of the
occurrence of the same states in spite of these high
fluctuations (noisy data). It is important to emphasize
that these parameters are statistical measures and that
their validity increases with the size of the CRP.

Compared to the other methods, this CRP tech-
nique has important advantages. Since all parameters
are computed for various time delays, lags can be iden-
tified and causal links proposed. An additional analy-
sis with opposite signed second time series allows
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us to distinguish positive and negative relations. To
recognize the measures for both cases, we add the in-
dex ‘+’ to the measures for the positive linkage and
the index ‘−’ for the negative linkage, e.g.,RR+ and
RR−. A further substantial advantage of our method
is the capability to find also nonlinear similarities in
short and nonstationary time series with high noise
levels as they typically occur, e.g., in biology or earth
sciences. However, the shortness and nonstationarity
of data limits this method as well. One way to re-
duce problems that occur with nonstationary data is
the alternative choice of the neighbourhood as a fixed
amount of neighbours in the ball with a varying ra-
dius ε. A further major aspect is the reliability of the
found results. Until a mature statistical test is devel-
oped, a first approach could be a surrogate test.

In the next section we apply these measures of
complexity to prototypical model systems and to real
data.

5. Examples illustrating the CRP

5.1. Noisy periodic data

First, we consider a classical example to check
whether our technique is there compatible with linear
statistical tools: two sine functionsf (x) andg(x) with
the same period (2π ), whereby the second function
g(x) is shifted by π/2 and strongly corrupted by
additive Gaussian white noiseξ ∈ [−1,1]; the signal
to noise ratio is 0.5 (Fig. 1). Both time series have
a length of 500 data points with a sampling rate of
2π/100.

We apply our analysis withm = 3, τ = π/2 and
ε = 1.5 (fixed radius, Euclidean distance). The CRP
shows diagonal structures separated by gaps (Fig. 2).
These gaps are the result of the high fluctuation of the
noisy sine function. Due to the periodicity of these
functions, the diagonals have a constant distance to
each other equal to the value of the periodλ = 2π . The
interrupted diagonal structures consist of a number of
short diagonals. However, these are long enough to
achieve significant maxima in the measuresRR, DET
andL.

As expected, in this example the classical cross-
correlation function shows a significant correlation
after a lag ofπ/2 (Fig. 3A). TheRR, DET and L

Fig. 1. Two delayed sine functions, one of them corrupted by addi-
tive white noise (B).

Fig. 2. Cross recurrence plot for two delayed sine functions (Fig. 1)
with an embedding ofm = 3, τ = π/2 andε = 1.5. The diagonal
lines in the CRP result from similar phase space behaviour of both
functions.

functions also show maxima for positive and negative
relation betweenf (x) andg(x). These maxima occur
with the same lagsπ/2 like the linear correlation
test (Fig. 3B–D). Despite the high noise level, these
measures find the correlation. Hence, the result of
this CRP analysis agrees with the linear correlation
analysis.



N. Marwan, J. Kurths / Physics Letters A 302 (2002) 299–307 303

Fig. 3. Cross-correlation (A),RR(B), DET (C) andL (D) for two
delayed sine functions.L has the unit of time. The solid black
lines show positive relation, the dashed lines show negative relation.
The dash-dotted line in (A) marks the 5% confidence interval. All
functions (A)–(D) detect the correlation after a lag ofπ/2.

Due to the noisy data, the trajectories strongly
fluctuate in the phase space. Therefore, only short
diagonal lines in the CRP occur and the means of the
measuresDET andL have (relative) small values.

5.2. System with nonlinear correlations

The next example is concerned to a nonlinear
interrelation between systems. We will study this
interrelation by using a standard linear method (cross
correlation), a standard method from nonlinear data
analysis (mutual information, cf. [2]) and the new
proposed measures. We consider linear correlated
noise (autoregressive process), which is nonlinearly
coupled with thex-component of the Lorenz system
x(t) (solved with an ODE solver for the standard
parametersσ = 10, r = 28, b = 8/3 and a time
resolution of∆t = 0.01, [17,18]). We use a first order
autoregressive processyn and force it with the squared
x-component

(6)yn = 0.86yn−1 + 0.500ξn + κx2
n,

whereξ is Gaussian white noise andxn (x(t) → xn,
t = n∆t) is normalized to standard deviationσ = 1
(Fig. 4). The data length is 8000 points. The coupling
κ is realized without any lag. In order to study the
behaviour of the proposed measures as a function
of the coupling strength, we compute the CRPs for

Fig. 4. (B) Time series of a nonlinear related system consisting of a
driven first order autoregressive process, forced by the squared (A)
x-component of the Lorenz system (κ = 0.2). The major periods
(frequencies) are 2.9 (0.34) and 1.1 (0.94) forx (C) and 0.77 (1.30)
and 0.96 (1.05) fory (D).

κ ∈ [0,3] and for 500 independent realizations. The
major periods of the systemx are 2.9 and 1.1, whereas
the major periods of the selected realization of the
systemy shown in Fig. 4 are 0.77, 0.96 and 0.59
(ordered from highest to lower).

The cross correlation analysis ofx and y do
not reveal a significant linear correlation between
them (Fig. 6A,B). The linear correlation does not
increase for a growing coupling strengthκ . However,
the mutual information shows a strong dependence
betweenx and y at delays of 0.05, −0.29 and 0.44
(Fig. 6C,D). This measure increases for a growing
coupling. Analogous results can also be found with
other nonlinear techniques which are designed for the
study of interrelations as described in [19,20].

The CRP of the driven AR-process (Eq. (6)) with
thex-component of the Lorenz system (m = 5,τ = 10,
ε = 2) contains a lot of longer diagonal lines, which
represent time ranges in which both systems have a
similar phase space dynamics (Fig. 5). The results of
the quantitative analysis of the CRP is strongly differ-
ent from those of the linear analysis. It is important
to note that the linear correlation analysis is here not
able to detect any significant coupling or correlation
between both systems (Fig. 6A and B).

Our measures of complexity exhibit the following:
RR and L exhibit maxima at a lag of about 0.05
for RR+/L+ and RR−/L− and additionally at 0.45
and −0.32 for RR−/L− (Fig. 7A,E). The delay of
about 0.05 stems from the auto correlation ofy
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Fig. 5. Cross recurrence plot for the forced autoregressive process
y (Fig. 4B) and the forcing function (x-component of the Lorenz
system, Fig. 4A) for a coupling strengthκ = 0.2 and an embedding
m = 5, τ = 10,ε = 2.

and approximately corresponds to its correlation time
∆t/ ln0.86= 0.066. The other both delays are in the
sum 0.77 which suggests, that they are due to an
interference of the main periods of the systems.DET+
andDET− has also maxima at these delays, but these
maxima are not significant in the sense that the values
exceed the 2σ -level of the DET distribution gained
from 500 realizations (Fig. 7C). This is due to the rapid
fluctuating ofy and, thus, the less amount of longer
diagonal structures (l > 3). The reconstructed phase
space trajectories ofx andy do not run parallel for
some time.

The three measures have a slightly different de-
pendence on the coupling strengthκ : whereasRR in-
creases rather fast with growingκ , DET increases
slower andL increases much slower with growingκ
(Fig. 7B,D,F). In comparison with the mutual infor-
mation, the proposed measures have a similar regime,
but especiallyDET andL, spread stronger. However,
this spread depends on the length of the considered
data and decreases for longer data sets.

Finally we can infer, that the measuresRR and
L are suitable in order to find the nonlinear relation
between the considered data series, where the linear

Fig. 6. Cross-correlation (A), (B) and mutual information (C), (D)
for the forced autoregressive process and the forcing function; (A)
and (C) represents the measures for one realization as functions
of the delay and for a couplingκ = 0.2, (B) and (D) represents
the measures for one realization (dots) and averaged (line) as
functions of the coupling strengthκ (for a delay of zero). The
dash-dotted lines in (A) mark the significance level of 5% for the
linear correlation betweenx andy, the gray bands in (B), (C) and
(D) mark the 2σ margin of the distributions of the measures gained
from the 500 realizations. The cross-correlation function does not
find a significant correlation, but the mutual information shows
significant interrelations betweenx and y at delays of 0.05, 0.4
and −0.3. The correlation coefficient does not clearly change for
a growing coupling strength (B), however, the mutual information
monotonically increases with a growing coupling strengthκ up to
κ = 1 and does not change forκ > 1 (D).

analysis is not able to detect this relation. In this
example,DET does not reveal the nonlinear relation,
because the rapidly fluctuation iny kicks away the
reconstructed phase space trajectory from the parallel
running to the trajectory ofx. Since the result is rather
independent of the sign of the second data before the
embedding, the found relation is of the kind of an even
function.

5.3. Climatological data

The last example shows the potential of the CRPs
in order to find interrelations in natural data. We inves-
tigate, whether there is a relation between the precipi-
tation in an Argentinian city and the El Niño/Southern
Oscillation (ENSO). Power spectra analysis of local
rainfall data found periodicities of 2.3 and 3.6 years
within the ENSO frequency band [21].
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Fig. 7. RR (A), (B), DET (C), (D) andL (E), (F) for the forced
autoregressive process and the forcing function (L has the unit
of time). The solid lines show positive relation, the dashed lines
show negative relation. The gray bands mark the 2σ margin of the
distributions of the measures gained from the 500 realizations; only
the 2σ margins forRR+, DET+ andL+ are shown.RR+/L+ and
RR−/L− have clear maxima for a lag about 0.05, RR− and L−
have additionally maxima at 0.4 and −0.3, which is the similar
behaviour as the mutual information. The dependence from the
coupling strengthκ is slightly different. WhereasRR increases
rather fast with growingκ (B), DET increases slower (D) andL
increases much slower (F) with growingκ . Since the maxima occur
for RR+, DET+ andL+− as well as forRR−, DET− andL−, the
found relation is of the kind of an even function.

For our analysis we use monthly precipitation
data from the city San Salvador de Jujuy in NW
Argentina for the time span 1908–1987 (data from
[22]). The behaviour of the ENSO phenomenon is well
represented by the Southern Oscillation Index (SOI),
which is a normalized air pressure difference between
Tahiti and Darwin (Fig. 8; data from the Climate
Server of NOAA, 1999,http://ferret.wrc.noaa.gov).
Negative extrema in SOI data mark El Niño events and
positive extrema La Niña events. We use the monthly
SOI data for the same time span as the rainfall data.
Both data sets have lengths of 960 points.

Fig. 8. (A) Southern oscillation index (SOI) and (B) rainfall data of
San Salvador de Jujuy.

Fig. 9. Cross recurrence plot of SOI vs. precipitation data from the
city of San Salvador de Jujuy for an embedding ofm = 3, τ = 4 and
ε = 1.3. Thex-axis shows the time along the phase space trajectory
of the SOI and they-axis that of JUY.

The cross correlation function and the mutual
information show rather small correlation% = 0.14
between both data series with time delays of around
3 and 7 months, respectively (Fig. 10A,B).

After normalization of the data, the CRP with
m = 3, τ = 4 and ε = 1.3 is calculated and shows
several structures (Fig. 9).

http://ferret.wrc.noaa.gov
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Fig. 10. Cross correlation (A), mutual information (B) and CRP parameters (C)–(E) of SOI vs. precipitation data from the city of San Salvador
de Jujuy (JUY). In (C)–(E), the solid lines show positive relation, the dashed lines show negative relation. The dashed-dotted lines in (A) mark
the 5% confidence interval. The maxima of the measures reveal an interrelation between the rainfall and the ENSO.

The CRP analysis of local rainfall and SOI is done
with a predefined shortest diagonal lengthlmin = 6.
The analysis reveals maxima for the complexity mea-
suresRR+, DET+ and L+ for correlated behaviour
around a delay of zero months, whereas the measures
for anti-correlated behaviourRR−, DET− andL− in-
crease after about five months (Fig. 10). This result
enables to conclude a positive relation between ENSO
and the local rainfall. This gives some indication that
the occurrence of an El Niño (extreme negative SOI)
at the end of a year causes a decreased rainfall in the
rainy season from November to January and the oc-
currence of a La Niña (extreme positive SOI) causes
an increased rainfall during this time of the year. This
conclusion extends the results obtained by power spec-
tra analysis, where the similar periodicities in both
SOI and local rainfall data were found [21]. These
analysis show that a source for inter-annual precipi-
tation variability in NW Argentina is the ENSO [21].

The linear correlation analysis finds the correlation,
however, it is scarce above the significance and its
mean at a lag of three months. The mutual informa-
tion does not reveal a clear sign for interrelation be-
tween the data. It has small maxima at delays of 7 and
−10 months. In contrast, all the complexity measures
RR, DET andL show a significant result and decom-
pose the correlation in a positive one with no delay and
in a negative one with a delay of about five months,
what suggests a more complex interrelation between

the ENSO phenomenon and local rainfall in NW Ar-
gentina.

6. Conclusions

We have modified the method of cross recurrence
plots (CRPs) in order to study the similarity of two
different phase space trajectories. Local similar time
evolution of the states becomes then visible by long
diagonal lines. The distributions of recurrence points
and diagonal lines along the main diagonal provides
an evaluation of the similarity of the phase space tra-
jectories of both systems. We have introduced three
measures of complexity based on these distributions.
They enable to quantify a possible similarity and in-
terrelation between both dynamical systems. We have
demonstrated the potentials of this approach for typi-
cal model systems and natural data. In the case of lin-
ear systems, the results with this nonlinear technique
agree with the linear correlation test. However, in the
case of nonlinear coupled systems, the linear correla-
tion test does not find any correlation, whereas non-
linear techniques, as the mutual information, and the
proposed complexity measures clearly reveal this re-
lation. Additionally, the latters determine the kind of
coupling as to be an even function. The application
to climatological data enables to find a more complex
relationship between the El Niño and local rainfall in
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NW Argentina than the linear correlation test, the mu-
tual information or the power spectra analysis yielded.

Our quantification analysis of CRPs is able to find
nonlinear relations between dynamical systems. It pro-
vides more information than a linear correlation analy-
sis and the nonlinear technique of mutual information
analysis. The future work is dedicated to the develop-
ment of a significance test for RPs and the complexity
measures which are based on RPs.
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Abstract Higher variability in rainfall and river discharge
could be of major importance in landslide generation in the
north-western Argentine Andes. Annual layered (varved) de-
posits of a landslide dammed lake in the Santa Maria Basin
(26ÆS, 66ÆW) with an age of 30,00014C years provide an
archive of precipitation variability during this time. The com-
parison of these data with present-day rainfall observations
tests the hypothesis that increased rainfall variability played
a major role in landslide generation. A potential cause of such
variability is the El Niño/ Southern Oscillation (ENSO). The
causal link between ENSO and local rainfall is quantified by
using a new method of nonlinear data analysis, the quanti-
tative analysis of cross recurrence plots (CRP). This method
seeks similarities in the dynamics of two different processes,
such as an ocean-atmosphere oscillation and local rainfall.
Our analysis reveals significant similarities in the statistics of
both modern and palaeo-precipitation data. The similarities
in the data suggest that an ENSO-like influence on local rain-
fall was present at around 30,00014C years ago. Increased
rainfall, which was inferred from a lake balance modeling in
a previous study, together with ENSO-like cyclicities could
help to explain the clustering of landslides at around 30,000
14C years ago.

1 Introduction

Climate is a major influential factor for mass movements in
high mountain regions. Increased humidity (Dethier and Re-
neau 1996) or increased variability in rainfall (Grosjean et al.
1997; Keefer et al. 1998) can reduce thresholds for catas-
trophic landsliding. In order to estimate the influence of cli-
mate in a given region, the climatic conditions during epi-
sodes with enhanced landsliding are compared with periods
without important mass movements. The precise definition

Correspondence to: Norbert Marwan
e-mail:marwan@agnld.uni-potsdam.de

of climate scenarios at times of high rock avalanche activity
helps us to define threshold values for increased landsliding.

About 30,000 14C years ago, multiple large rock
avalanches with volumes in excess of 106 m3 occurred in
the arid to semiarid intra-andean basins of north-western Ar-
gentina (Strecker and Marret 1999; Hermanns and Strecker
1999; Trauth and Strecker 1999). A potential mechanism that
could have caused this enhanced landsliding in such an envi-
ronment is climate change. Increased humidity and/or higher
inter- and intraannual rainfall variability results in higher river
discharge and erosion in narrow valleys and therefore increa-
sed destabilization of mountain fronts.

The climatic conditions in NW Argentina are not well
known for the period at around 30,00014C years ago. Marine
and terrestrial records from tropical and subtropical South
America indeed suggest more humid conditions (the Minchin
period between 40,000 and 25,00014C years ago, e. g. van der
Hammen and Absy 1994; Ledru et al. 1996; Godfrey et al.
1997; Turcq et al. 1997) and a strong El Ni˜no/ Southern Os-
cillation (ENSO) (e. g. Oberh¨ansli et al. 1990; Beaufort et al.
2001). Various modeling studies have shown an impact of
orbital forcing on ENSO and its weakening during the ice
ages (Clement et al. 1999; Liu et al. 2000). Thus El Ni˜no
events may be rare around 30,00014C years ago (Clement
et al. 1999). Beaufort et al. (2001), however, inferred from
Coccolithophores production a significant occurence of the
ENSO for this period, and Tudhope et al. (2001) based on the
analysis of annually banded corals concluded that ENSO has
been a persistent component of the climate system over the
past 130 ka.

However, the local signal of the climatic changes in NW
Argentina is still not well defined. Laminated sediments from
a former landslide dammed lake in the Santa Maria Basin
(NW Argentina, 26ÆS 66ÆW) contain valuable information
about the environmental conditions for the period around
30,00014C years ago (Trauth and Strecker 1999; Trauth et al.
2000). Hydrologic modeling of this palaeo-lake indeed in-
dicates significantly wetter conditions during this time com-
pared to the present (around 10 to 15 % higher precipitation,
Bookhagen et al. 2001). Linear spectral analysis of palaeo-
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precipitation data derived from annual layered (varved) lake
sediments also suggest an ENSO-like influence on rainfall
and consequently increased interannual rainfall variability in
river discharge and erosion (Trauth and Strecker 1999; Trauth
et al. 2000). However, the results of such linear methods are
often ambiguous and not appropriate, since natural processes
are complex, exhibit nonstationarities and are mostly recorded
as short and noisy time series. In fact, data gained from sed-
imentation processes (as colour data) are nonstationary by
their origin and the relationship between climatic forcing and
rainfall is not expected to be linear. Linear methods are usu-
ally unsuitable to investigate natural complex data. In addi-
tion, these approaches do not provide any information about
a change in the climate dynamics, e. g. the sign of precipita-
tion changes related to ENSO-like oscillations.

The aim of our work is to test the hypothesis that an en-
hanced ENSO-like influence on local rainfall caused a tempo-
ral landslide cluster 30,00014C years ago. For this purpose,
we first try to identify ENSO-like patterns in present-day pre-
cipitation data and infer causal links between this ocean-atmo-
sphere oscillation and local rainfall. Secondly, we search for
similar influences in palaeo-precipitation data reconstructed
from 30,00014C year old lake sediments. This comparison
is carried out using a new method of nonlinear data analy-
sis, thecross recurrence plots (CRP), which can be applied
to short and nonstationary complex data (Marwan and Kurths
2002). This procedure traces similarities and differences in
several measures of complexity in both modern and past rain-
fall data. Significant occurrences of the ENSO-rainfall tele-
connection together with increased rainfall could help to ex-
plain enhanced landsliding 30,00014C years ago in NW Ar-
gentina where no major mass movements occur today.

2 Present-day Climatic Conditions

Summertime climate and atmospheric circulation over NW
Argentina is largely governed by the South American mon-
soon system (e. g. Zhou and Lau 1998), featuring heavy pre-
cipitation, an upper-air anticyclone (Bolivian High) and a low-
level trough (Chaco low). Approximately 80 % of the an-
nual precipitation amount falls within the summer months
November– February (Bianchi and Ya˜nez 1992), associated
with southward moisture transport to the east of the Andes
through the Andean low-level jet (e. g. Nogu´es-Paegele and
Mo 1997). The intra-andean basins and valleys, separated
from this low-level moisture flux through the north-south run-
ning eastern Andean ridge, are arid and receive less than
200 mm yr�1, whereas the regions to the east of this oro-
graphic barrier receive more than 1500 mm yr�1 (Bianchi and
Yañez 1992).

Due to the seasonal change in the tropospheric tempera-
ture gradient between low and mid-latitudes, the subtropical
westerly jet extends further north during the winter months,
reaching its northernmost position around 27ÆS. The resulting
wintertime mean westerly flow, which prevails over the study
region in the mid- and upper troposphere, hinders regional

moisture transport over the eastern slopes of the Andes and
leads to a typically dry winter climate (less than 50 mm per
month).

On interannual time scales, summer precipitation in the
Central Andes, is primarily related to changes in meridional
baroclinicity between tropical and subtropical latitudes,
which in turn is a response to sea surface temperature anoma-
lies in the tropical Pacific (e. g. Vuille et al. 2000; Garreaud
and Aceituno 2001; Garreaud et al. in press). The study re-
gion therefore shows a significant relationship with ENSO,
featuring a weakened westerly flow with a significantly en-
hanced easterly moisture transport during La Ni˜na summers
and strengthened westerly flow with a significantly subdued
easterly moisture transport during El Ni˜no summers. As a re-
sult, the rainy season is much more active during La Ni˜na
episodes and less active during El Ni˜no episodes. These
ENSO related atmospheric circulation anomalies are also ev-
ident in radiosonde data to the east of the Central Andes over
NW Argentina (Salta), featuring enhanced southeasterly
(northwesterly) flow and increased (decreased) specific hu-
midity levels in the lower and mid-troposphere during La
Niña (El Niño) summers (Vuille 1999). The notion that this
ENSO influence indeed extends beyond just the Central An-
des is further supported by several recent studies, which in-
dicate that precipitation anomalies in this part of the Andes
tend to coincide with anomalies of the same sign over SE
Bolivia and NW Argentina (e. g. Aceituno and Montecinos
1997; Garreaud 1999). Bianchi and Ya˜nez (1992) also re-
port a weak but significant tendency toward less rain dur-
ing El Niño years, based on a high-density network of 380
weather stations. Trauth et al. (2000) provide a detailed statis-
tical analysis on the same data set showing that this tendency
is very obvious but spatially and temporally highly variable.
As indicated in Fig. 1 for the representative El Ni˜no event
1965/66, precipitation can be decreased up to 80 % with re-
spect to the long-term average in rainfall, with a more signif-
icant reduction in the northern part of the study area. A com-
posite analysis of the monthly summer precipitation (DJFM)
difference between El Ni˜no and La Niña summers between
1979 and 1999 based on CMAP satellite-derived precipita-
tion data (Xie and Arkin 1997) confirms this notion (Fig. 2).
Although weak, the tendency toward less precipitation dur-
ing El Niño and more precipitation during La Ni˜na episodes
is evident even in this low-resolution gridded data. Similar
to the pattern in Fig. 1, the ENSO signal is reversed a few
degrees further south, where summer precipitation becomes
less dominant.

3 Methods

It is difficult to compare rainfall proxies from 30,00014C
year old lake sediments with present precipitation data. The
process recording weather and climate in palaeo-archives is
complex and so far not very well understood (Saltzman 1990;
Bradley 1999). Because of various signal distortions in both
time and frequency domain, the use of linear data analysis
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Fig. 1 Study area in the Santa Maria Basin with the locality of an-
nual layered lake deposits in the locality El Paso, the relative pre-
cipitation anomaly during the El Ni˜no 1965/66 compared to mean
annual precipitation (annual precipitation as a mean from July to
June; data from Bianchi and Ya˜nez 1992) and the prevailing wind
directions during January (black arrows; wind directions from Pro-
haska 1976).

methods reaches its limits. The complexity of natural pro-
cesses suggests the application of nonlinear methods instead
for the analysis and comparison of such complex processes.
Most of the nonlinear standard techniques, such as fractal di-
mensions or Lyapunov exponents, cannot be estimated for
such data (Kantz and Schreiber 1997). Therefore, we have
tried to quantify cross recurrence plots of present-day and
palaeo-data. This reveals a suite of complexity measurements
which give hints to identify similar patterns in present-day
and palaeo-data. This comparison first tests the hypothesis
that the signal extracted from the lake sediments is an ap-
propriate measure for palaeo-precipitation. Secondly, it helps
to reconstruct the variability in annual rainfall as compared
to the present. Both results can then be used to test the hy-
pothesis that increased interannual variability in climate can
explain enhanced landslide activity 30,00014C years ago.

Precipitation Anomaly [mm/day]
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Fig. 2 Difference in precipitation (in mm day�1) between El Ni˜no
and La Niña periods (El Ni˜no – La Niña) for December – March
based on CPC merged analysis of precipitation (CMAP, Xie and
Arkin 1997) between 1979 and 1999. Contour interval is�4, �2,
�1, �0:5, 0:5, 1, 2, 4 mm day�1, regions with difference> 0:5
(< �0:5) shaded in light (dark) gray. An El Ni˜no (La Niña) event
is defined as a phase of at least six consecutive months in which the
5-month running mean of SSTA in the NINO3.4 region exceeds (or
remains below) 0:5ÆC (�0:5ÆC). The reference period for the SSTA
is 1961-90.

3.1 Cross recurrence plots (CRP)

An important aspect of climate changes involves nonlinear
interactions among many components of the earth’s environ-
mental system (e. g. Palmer 1999). These components include
the oceans, land, lakes and continental ice sheets, and in-
volve physical, biological, and chemical processes. Many of
the techniques used to diagnose climatic variability such as
Fourier analysis, empirical orthogonal functions or singular
value decomposition are formulated using methods taken
from linear analysis. However, while using these techniques
it is difficult to analyze the nonlinear character of the earth’s
climate system. In the last two decades, a great variety of
nonlinear techniques have been developed to analyse data
of complex processes. Most popular are methods to estimate
fractal dimensions or Lyapunov exponents (e. g. Mandelbrot
1982; Wolf et al. 1985; Kurths and Herzel 1987; Kantz and
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Schreiber 1997). However, a number of pitfalls are possible
due to the uncritical use of these methods on natural data,
which are typically nonstationary and noisy. Furthermore, we
cannot expect low dimensions in highly complex natural pro-
cesses. Therefore, we have modified and applied the nonlin-
ear data analysis method of cross recurrence plots, which was
recently introduced by the extension of recurrence plots (Zbi-
lut et al. 1998; Marwan et al. 2002), for detecting similarities
and differences in the ENSO influence in present-day and
past rainfall data. In order to quantify such similarities by
using CRPs, new measures of complexity were introduced.
Measures of complexity were developed in order to quan-
tify the complexity of processes; the simplest measure is the
entropy, which distinguishs between noisy and periodically
processes. Here we use an approach which uses the geomet-
rical structures which are contained in CRPs. This new tech-
nique is particularly efficient for the analysis of rather non-
stationary, short and noisy data and was successfully applied
to prototypical model systems with nonlinear interrelations
(Marwan and Kurths 2002). Thus, the CRP is an appropriate
method for time series analysis of climate and palaeo-climate
data.

The basic idea of this approach is to compare the dynam-
ics of two processes which are both recorded in a single time
series. Following Taken’s embedding theorem (Takens 1981),
the dynamics of a process with ˆm state parameters (i.e. ˆm
differential equations), which is, however, measured by only
one time seriesu(t) = ui with lengthN and a sampling time
∆t (i.e. t = i ∆t), can be appropriately presented in its recon-
structed phase space of a dimensionm (theoretically when
m> 2m̂+1). Such a reconstruction can be formed by using
the time delay method (embedding), where for each compo-
nent of the state vector a value of the time series after a pre-
defined delayτ (time delay) is choosen:

xi =
�
ui ;ui+τ; : : : ;ui+(m�1)τ

�
; i = 1: : :N; (1)

The dimensionm of such a reconstructed state or phase
space is called embedding dimension. The time evolution of
the state vectors forms a trajectoryxi , which runs through all
possible states at timet = i ∆t and, thus, present the dynamics
of the process.

The similarity in the behaviour of both processes in this
reconstructed phase space can be examined by using the CRP,
which visualizes the distance between segments of their phase
space trajectoriesxi andyi of the embedded time series (Mar-
wan and Kurths 2002)

CR+
i; j = Θ(ε�kxi �y jk); i; j = 1: : :N; (2)

whereε is a predefined cut-off distance,k � k is the norm
(e. g. the Euclidean norm) andΘ(x) is the Heaviside func-
tion. Depending on the type of the application,ε can have a
fixed value or can vary for eachi in such a way that a pre-
defined number of neighbours occur within a certain radius
ε (Eckmann et al. 1987; Marwan et al. 2002). This results in
a constant density of recurrence points in each column of the
CRP and is particularly useful in the analysis of complex pro-
cesses with differences in the variability of the amplitudes.

The CRP is a two-dimensionalN �N array of points
whereN is the number of embedding vectors obtained from
the delay coordinates of the input signal. The values of the
CRP areone (black points) if trajectories lie close to each
other (recurrence points), whereas values ofzero (white
points) document rather large distances between two trajec-
tories. From the occurrence of lines in the CRP parallel to
the diagonal in the recurrence plot it can be seen how fast
neighbouring trajectories diverge in the phase space. Recur-
rent data in a system would create diagonal lines in a dis-
tancet from the main diagonal in such a plot comparing both
phase-space embeddings with respect to the time delayt. It is
important to note that an additional CRP with opposite signed
second time seriesCR�

i; j = Θ(ε�kxi +y jk) allows to distin-
guish positive and negative relations.

Visual inspection of CRPs already reveals valuable in-
formation about the relationship between two complex pro-
cesses. However, a better understanding of causal links be-
tween both processes demands a more quantitative exami-
nation of the CRPs. Therefore, we introduce the following
two statistical measures of complexity (Marwan and Kurths
2002):

therecurrence rate,

RR(t) =
1

N� i

N�i

∑
j=1

�
CR+

j ; j+i �CR�

j ; j+i

�
; (3)

and theaveraged diagonal length

L(t) =
∑N�i

l=lmin
l [P+(l ; t)�P�(l ; t)]

∑N�i
l=lmin

[P+(l ; t)�P�(l ; t)]
; (4)

wherelmin is a predefined minimal length of a diagonal line
segment,P�(l ; t) is the histogram of the diagonal line lengths
in CR� at a distancet from the main diagonal (i. e. the time
delayt between the two phase space vectors) andt = i ∆t. The
RR(t) is the density of adjacent states, i. e. of the recurrence
points in a CRP diagonal.RR(t) therefore measures the prob-
ability of similar states in both processes after a delay timet.
High densities of recurrence points in a diagonal cause high
values ofRR, which is typical for processes with a similar
behaviour in the phase space.

Strongly fluctuating data cause short or absent diagonals
in the CRP, whereas data from deterministic processes pro-
duce longer diagonals. If two deterministic processes have the
same or similar phase-space behaviour, i. e. the phase-space
trajectory reaches the same regions of the phase space dur-
ing certain times, then the number of longer diagonals will
increase and the amount of short diagonals decrease. The av-
erage diagonal lengthL measures the epoch length (i. e. the
time span) of significant similarities in the behaviour of both
processes. The higher the coincidence of both processes, the
larger the length of these diagonals.

Consequently, high values ofRRandL correspond to fre-
quent and longer periods of similar behaviour of the pro-
cesses as recorded in the time series data. Therefore, these
parameters are appropriate quantitative measures for the sim-
ilarities between both processes. However, extrema at longer
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delayst do not necessarily correspond with high correlations.
Future work will concentrate on the theoretical and more de-
tailed investigation of the interrelations between the struc-
tures in CRPs.

We have proposed a statistical evaluation of the quantita-
tive measures of the CRP with an ensemble of a large amount
of surrogate data.

The assumption for the surrogate data is that the consid-
ered processes are linearly independent and do not have any
similar dynamics. These surrogates should reveal some fea-
tures like in our original data but also features caused by the
randomness of a possible correlation (stochastic processes).
Linear correlated noise is a paradigmatic example for such
processes (Kantz and Schreiber 1997). We calculate a surro-
gate time series based on this class of processes with the fol-
lowing recursive function, a autoregressive process of order
p,

xn =
p

∑
i=1

apxn�p+bξn;

whereξ is white noise andai are coefficients which de-
termine the auto-correlation of the system and allow to adapt
this stochastic system to our natural processes. We fit the
model to the precipitation series of the station Tucuman. Then
we perform the CRP analysis using the SOI data and the
ensemble of, e. g. 10;000 realizations of precipitation series
produced by the AR model. Using the distributions of theRR
andL measures we can estimate their empirical confidence
bounds (we will use the 2σ-bounds which approximately cor-
respond with the 95% confidence level).

With these confidence bounds we can evaluate the ob-
tained measures of CRP and the relations of the natural pro-
cesses. Since the surrogates are from a stationary system and
the natural data are nonstationary, we have further applied
this kind of evaluation to more stationary segments in the nat-
ural data. We got the same results. This kind of surrogates is a
special realization, which is prototypical for linear stochastic
processes, and there are a lot of other possibilities to construct
surrogates.

3.2 Comparison of modern and palaeo-precipitation
variability

In order to test the new method on precipitation data, we first
compute the CRP for rainfall stations with well established
and clear ENSO influence. We use monthly precipitation data
from the cities of Buenos Aires (BAI) and Caracas (CAR)
from the WMO data set (Hoffmann 1975). For the assess-
ment of the modern ENSO influence on local rainfall in NW
Argentina, we analyze monthly precipitation data from three
stations: San Salvador de Jujuy (JUY), Salta (SAL) and San
Miguel de Tucuman (TUC; Figs. 1 and 3 B). These stations
in the capitals of the provinces Jujuy, Salta and Tucuman pro-
vide the longest time series from this area and are located
on a north-south transect. Moreover, these locations are in-
fluenced by different local winds; Jujuy and Salta mainly re-
ceive north-easterly and easterly moisture-bearing winds dur-

ing the summer rainy season, whereas Tucuman is character-
ized by southerly and south-westerly winds (Prohaska 1976).
The Southern Oscillation Index (SOI) is used as a measure
for the ENSO variability between the years 1884 and 1990
(Fig. 3 A, based on COADS data). This index is the normal-
ized difference between the sea level air pressure in Tahiti and
Darwin. Extreme negative values represent El Ni˜no events
and extreme positive values represent La Ni˜na events (Ro-
pelewski and Halpert 1987). In our analysis, we use monthly
data, i. e. twelve data points per year in order to avoid loos-
ing valuable intraannual information. Moreover, longer data
vectors improve the significance of the CRP measures, thus
the use of annual data would significantly reduce the value
of our results. The potential distortion of the final result by
differences in the causal linkage between ENSO and rainfall
over the year, i. e. between dry and wet season, is believed to
be of minor importance since the absolute values of precipi-
tation during the dry season are low and hence the contribu-
tion to the analysis is small. The rainfall variability during the
dry season is not significantly different from white noise and
disappears after low-pass filtering preceding the actual time
series analysis.
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Fig. 3 Smoothed andσ-normalized time series of the South-
ern Oscillation Index (A), monthly precipitation data of Salta
(B) and its smoothed andσ-normalized time series (C). SOI
based on COADS data from the NOAA Live Access Server
(http://ferret.wrc.noaa.gov).

http://ferret.wrc.noaa.gov).
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The CRP analysis of the present-day ENSO and precip-
itation data reveals characteristic patterns that can now be
traced in palaeo-precipitation data. The palaeo-precipitation
variability is inferred from varved lake sediments sampled
at the locationEl Paso (EP; 26.0ÆS, 65.8ÆW) in the Santa
Maria Basin in NW Argentina (Figs. 1 and 4). These sedi-
ments were deposited in a landslide dammed lake 30,00014C
years ago (Trauth and Strecker 1999; Hermanns and Strecker
1999). Because of the internal structure of the deposits with
intra-varved changing of diatom species and the cyclic recur-
rence of paired diatomite and clastic layers, these laminations
are varves (Trauth and Strecker 1999). The annual cycle with
wet summers and dry winters caused significant changes in
the lake sedimentation. During the rainy season mainly ocher
coloured silty sediments were deposited; during the subse-
quent dry season a thin white layer consisting of the skele-
tons of silica algae (diatoms) was deposited. Due to its white
colour, the diatomaceous layers can be used to identify single
years in these sediments. Recurring intense red colouration
of the silty part of the annual layers is sourced from reworked
older sediments which are eroded and deposited only during
extreme rainfall events. Therefore, the intensity of red colour
in the varved deposits can be interpreted as a proxy for pre-
cipitation variation at El Paso site (Trauth and Strecker 1999;
Trauth et al. 2000). The more intense the red colour the higher
was the precipitation during the rainy season.

Fig. 4 Detail of varved lake sediments from the El Paso site in the
Santa Maria Basin with cyclic occurrence of dark red colourations
recording more precipitation and sediment flux with ENSO-like pe-
riodicities (Trauth and Strecker 1999). The overlayed curve shows a
representative red colour intensity transect of the deposits.

The colour intensity of a section of the sediments pro-
file with a length of 160 varves was gained by scanning high
quality photographs. After digital pre-processing, a time se-
ries of red intensity values on a length scale was obtained. We
transform these data to a time scale assuming an annual re-
currence of the diatomaceous layers. Within single varves 12
subannual data points are computed by logarithmic interpola-
tion of the data taking into account the exponential decrease
of the sedimentation rate during the annual cycle (Fig. 5).
The power spectrum estimate of the red colour intensity re-
veals significant peaks within the ENSO frequency band of 2
to 4 years, suggesting an ENSO-like influence (Trauth et al.
2000). Because of the nonstationarity of these data (the sedi-
mentation process in a lake is not stationary, resulting in non-
stationary proxy parameters for the in-lake processes; mean
of the first half of the time series is 0:30, of the second half is
�0:32; standard deviation of the first half of the time series
is 1:13, of the second half is 0:71), linear correlation analysis
is unsuitable. Therefore, we apply the CRP analysis to these
data.
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Fig. 5 Red intensity values of the lake sediments of site EP160 on
(A) a length scale and on (B) a time scale and after smoothing and
normalization; the unit of raw data is one bit, the unit of transformed
and smoothed data is the standard deviationσ.

4 Results of Nonlinear Data Analysis

First, all time series are normalized and low-pass filtered us-
ing a 7th-order Butterworth filter with a cutoff frequency of
1/18 month�1 in order to remove the predominant annual cy-
cle from the data (Figs. 3 C and 5). Butterworth filters are
from the infinite-duration impulse response type (IIR filters)
and have a monotonically decreasing response with respect
to frequency (Elliott 1987).
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Fig. 6 Cross recurrence plot of SOI vs. precipitation data from the
city of Salta (SAL). Thex-axis shows the time along the phase space
trajectory of the SOI and they-axis that of SAL. Black points rep-
resent the occurrence of similar states in both processes. Diagonal
lines correspond with epochs of similar dynamics in both processes.
The amount and length of these lines can be used as measures of the
similarity of both processes.

Next, the filtered rainfall data and the Southern Oscilla-
tion Index (SOI) are embedded into a phase space usingm= 3
andτ = 9. The method of nonlinear time series analysis us-
ing delay time embedding relies on a choice of good delay
time and the embedding dimension. Proper values for these
parameters are determined using the methods of false near-
est neighbours and mutual information (Kantz and Schreiber
1997). The quantitative analysis of cross recurrence plots is
then applied to pairs of time series, local precipitation records
and the Southern Oscillation Index (SOI). The CRPs are com-
puted using a fixed amount of nearest neighbours withε =
15%. Since the statistics of CRPs are sensitive to changes in
the cutoff distance, we have run sensitivity tests in order to
find the optimum value ofε. The value of 15 % appears to be
the best choice receiving robust and precise results.

The CRPs of all pairs of time series show similar features.
The significant similarities between CRPs obtained from
modern (Fig. 6) and palaeo-precipitation data (Fig. 7) indi-
cate that the red colour intensity records from the varved lake
sediment do reflect rainfall in NW Argentina. First we dis-
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Fig. 7 Cross recurrence plot of SOI vs. the best matching section of
palaeo-precipitation (EP160). Scaling as in Fig. 6. Thex-axis shows
the time along the phase space trajectory of the SOI and they-axis
that of EP160.

cuss the CRP of Salta precipitation (data series SAL) vs. the
Southern Oscillation Index (SOI) and the CRP of red colour
intensity of varves (data series EP160) vs. SOI. Thex-axis
represents time along the phase space trajectory of the SOI,
whereas they-axis represents the time along the phase space
trajectory of SAL or EP160, respectively. The CRP of SAL
vs. SOI exhibits longer diagonal lines in two to four year in-
tervals, which matches the same frequency band obtained by
the power spectral analysis (Fig. 6). This indicates that some
sequences of the phase space trajectory of the SOI recur in
sequences of the phase space trajectory of SAL after relocat-
ing by the time of two to four years. Vertical white bands in
the CRP represent less frequent states in SOI, such as hori-
zontal white bands suggest for SAL. The latter occurs with
intervals of more than ten years. The CRP between EP160
and SOI shows similar characteristics as the CRP described
above (Fig. 7). Longer diagonal lines have spacings of about
two to four years. White bands occur at time scales of more
than ten years. Some linkages in both CRPs are obvious by
visual inspection. Next, the quantitative analysis of the CRPs
is performed in order to study statistically these relations and
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Fig. 8 RRandL measures of the cross recurrence plots between SOI
and precipitation in Caracas (A, C) and Buenos Aires (B, D) with a
well-established and clear ENSO influence. Extreme values reveal
high similarity between the dynamics of the rainfall and the ENSO.

to allocate the predefined causality patterns to certain locali-
ties.

In order to calculate the measures of complexityRRand
L between the rainfall data and SOI, we used a delay time in
the range between�12 and+22 months, i. e. these measures
are determined in a small corridor above and below the main
diagonal. We are interested in the extrema and in the time
lag where they occur and we get the following results for the
various pairs of records. From an ensemble of 10;000 realiza-
tions of a 5th-order AR-model we calculate the 2σ-bounds of
their distributions forRRandL. The coefficients for the AR-
model are adapted to the Tucuman precipitation (we also used
AR-models adapted to the rainfall data of the other stations,
which revealed similar results). The order of the AR-model
is determined with the Akaike’s Information Criterion and a
criterion, which assesses whether the residues follow white
noise (Schlittgen and Streitberg 1999).

The CRP measures between CAR and SOI reveal extreme
positive values and between BAI and SOI extreme negative
values, which reflect the strong influence of ENSO in these
areas (Fig. 8). The parameterRRof the CRPs between TUC
and SOI has small negative values, which do not exceed the
2σ-bounds, and does not show preferences for a distinct lag.
The parameterL has also small values, but it has rather small
maxima and minima at delays of�1, 4 and 8 months. These
results indicate that the precipitation in Tucuman is not
strongly influenced by ENSO. If there is a weak influence,
the rainfall would increase during El Ni˜no (Fig. 9 A, E). The
analysis of JUY and SOI reveals clear positive values around
a lag of zero and negative values after about 8 – 12 months,

which suggests a significant link between Jujuy rainfall and
ENSO (Fig. 9 C, G). The measures for the analysis SAL vs.
SOI show smaller maxima for a delay of about zero and min-
ima after a lag of about 8 – 12 months. We therefore infer a
weaker linkage between Salta rainfall and ENSO (Fig. 9 B, F;
the disrupted minima in theL parameter at around ten months
is due to the short data length and a resulting nonstationarity
in the CRP). The measures for SAL and JUY exceed the 2σ-
bounds.

The 30,00014C year old precipitation data are not sim-
ply comparable with present-day data, because there is no
information available about how to synchronize the rainfall
records with modern climate indices. Therefore we seek the
time window in these data showing the highest coincidence in
the dynamics using maximum values forRRandL as the key
criterion. Although the observed coincidence is not very high,
it yields the time section in the palaeo-precipitation record
EP160 which can be best correlated with modern data. In
our palaeo-data EP160 we find such a section represented
by maximum and minima values forRRandL for delays of
about zero and ten months, similar to those found for JUY
and SAL (Fig. 9 D, H). TheRRandL measures exceed also
the 2σ-bounds.

To use the minima at lags around 8 – 12 months for cli-
matological interpretations is difficult and might lead to er-
roneous conclusions, but these characteristic patterns of pos-
itive and negative interrelations can be used to compare the
present-day and palaeo-data. The positive and negative inter-
relations have the same time delay between 10 and 12 months
in the present-day and the palaeo-data.

5 Discussion

We applied the method of cross recurrence plots (CRPs) to
modern and palaeo-precipitation data in order to compare the
magnitude and causes of rainfall variability in the NW Argen-
tine Andes today and during the time of enhanced landslid-
ing at around 30,00014C years ago. CRPs are able to look for
nonlinear interrelations between two processes. The major re-
sult from this analysis is the significant similarity between
the complex dynamics of modern rainfall and the palaeo-
precipitation as recorded in the red colour intensity record
from the lake sediments in the location El Paso. The distances
between longer diagonal lines in the CRP of both records are
about two to four years, the approximate time of recurrence
of extreme ENSO phases today. The first implication of this
result is that the red colour intensity of the sediments is in-
deed a good proxy for the rainfall intensity 30,00014C ago.
This result is in line with the observations of Trauth et al.
(2000) suggesting an enhanced erosion of red-coloured clas-
tic sediments during heavy rainfall events today whereas pre-
cipitation usually only reaches the elevated areas with mainly
greenish low-grade metamorphic rocks exposed. This effect
causes predominant greenish to buff-coloured clays deposited
in the former lake basin (Trauth and Strecker 1999; Trauth
et al. 2000 2003).
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Fig. 9 RRandL measures of the cross recurrence plots between SOI and precipitation in Tucuman (A, E), Salta (B, F), Jujuy (C, G) and
palaeo-precipitation (D, H). Extreme values reveal high similarity between the dynamics of the rainfall and the ENSO. The dash-dotted lines
are the empirical 2σ-bounds from the distributions of an ensemble of data based on a 5th-order AR-model.

Since our analysis of modern data reveals a strong rela-
tion between local rainfall in the northern part of the study
area (Jujuy) and ENSO, we interpret this similarity as an in-
dication of a strong ENSO-like influence in the Santa Maria
Basin at around 30,000 years. In contrast, there is no signif-
icant linkage between the modern rainfall in Tucuman and
ENSO. This result could indicate that ENSO does not influ-
ence precipitation in the southern part of the study area or this
influence is rather diffuse or changing in time.

The CRP between the SOI and the rainfall in Jujuy and
Salta reveals a positive relation without any large delay, i. e.
the occurrence of an El Ni˜no at the end of a year would cause
decreased rainfall in the rainy season from November to Jan-
uary and the occurrence of a La Ni˜na would cause increased
rainfall during this time of the year. The opposite response
after a delay of 8 – 12 months is not easy to interpret, be-
cause we do not know which mechanism actually caused this
linkage. The time span between the identified maxima and
minima is about one year and could be explained by the fact
that La Niña events often follow El Ni˜no events. The smooth
shape of the CRP measure curves are artefacts caused by
low-pass filtering of the time series. The measures of CRP
of Tucuman precipitation and SOI show non-significant val-
ues without any characteristic delays. The analysis of varve
data reveals a significant positive relation between SOI and
palaeo-precipitation at the location El Paso. Similar to the
modern situation, the CRP shows a significant negative rela-
tion with SOI after a delay of about ten months. Both interre-
lations are rather similar to those of ENSO–JUY and ENSO–
SAL.

The similarities between the time series of the modern
rainfall data and the palaeo-precipitation record from the lake
sediments suggests that an ENSO-like oscillation was active

at around 30,00014C years ago (roughly corresponding to
34,000 cal. years BP), which corresponds with the results of
the investigation of Coccolithophores production (Beaufort
et al. 2001). A younger landslide cluster in the same region
at around 500014C (corresponding to 5800 cal. years BP)
was also explained by a stronger ENSO influence at that time
(Trauth et al. 2000; palaeo-ENSO evidence from Keefer et al.
1998; Sandweiss et al. 2001; Haug et al. 2001). The spac-
ing between both landslide clusters is around 28,000 years.
Although two landslide clusters do not allow to infer a sys-
tematic recurrence of such events, we believe that there is
some evidence that these events correspond to the periods of
a strong ENSO-like variation as reported from deep-sea sed-
iments off-shore Peru (Oberh¨ansli et al. 1990), in the Indo-
Pacific Ocean (Beaufort et al. 2001) and New Guinea corals
(Tudhope et al. 2001). These long-term ENSO records sug-
gest a mixed precession-glacial forcing on ENSO resulting in
significant 23- and 30-kyr cyclicities, which confirms model
results and recently inferred relations between ENSO vari-
ability and insolation (Clement et al. 1999; Liu et al. 2000;
Rittenour et al. 2000).

In the semiarid basins of the NW Argentine Andes, the
ENSO-like variation could have caused significant fluctua-
tions in local rainfall at around 30,00014C years similar to
the modern conditions. Together with generally higher mois-
ture levels as indicated by lake balance modeling results, this
mechanism could help to explain enhanced landsliding at
around 30,000 and 5,00014C years ago in the semiarid basins
of the Central Andes.
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6 Conclusions

The quantitative analysis of cross recurrence plots has re-
vealed similarities in the evolution of the phase space tra-
jectory of climate indices and present-day and past rainfall.
In comparison to the usually less variable climate during ice
ages, our result suggests an enhanced impact of ENSO-like
conditions on local climate in the Santa Maria Basin 30,000
14C years ago associated with a strong inter- and intraannual
variability of rainfall and an intensification of moisture trans-
port. A more variable climate due to an enhanced ENSO-like
impact could have raised the risk of landsliding in this re-
gion and could help to explain enhanced landslide activity at
around 30,00014C years ago.

7 Acknowledgments

This work is part of the Collaborative Research Center 267
Deformation Processes in the Andesand the Priority Pro-
grammeGeomagnetic variations: Spatio-temporal structures,
processes and impacts on the system Earthsupported by the
German Research Foundation. We gratefully acknowledge
U. Schwarz and M. Thiel for useful conversations and discus-
sions and U. Bahr and M. Strecker for support of this work.
Further we would like to thank the NOAA-CIRES Climate
Diagnostics Center for providing COADS and CMAP data.

References

Aceituno P, Montecinos A (1997) Patterns of convective
cloudiness in South America during austral summer from
OLR pentads. In: Preprints Fifth Int. Conf. on South-
ern Hemisphere Meteorology and Oceanography, Pretoria,
South Africa. Amer Meteor Soc, pp 328–329

Beaufort L, de Garidel-Thoron T, Mix AC, Pisias NG (2001)
ENSO-like Forcing on Oceanic Primary Production Dur-
ing the Late Pleistocene. Science 293: 2440–2444
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Abstract. The method of recurrence plots is extended to the
cross recurrence plots (CRP) which, among others, enables
the study of synchronization or time differences in two time
series. This is emphasized in a distorted main diagonal in
the cross recurrence plot, the line of synchronization (LOS).
A non-parametrical fit of this LOS can be used to rescale
the time axis of the two data series (whereby one of them is
compressed or stretched) so that they are synchronized. An
application of this method to geophysical sediment core data
illustrates its suitability for real data. The rock magnetic data
of two different sediment cores from the Makarov Basin can
be adjusted to each other by using this method, so that they
are comparable.

1 Introduction

The adjustment of data sets with various time scales occurs
on many occasions, e.g. data preparation of tree rings or geo-
physical profiles. In geology, often a large set of geophysical
data series is taken at various locations (e.g. sediment cores).
That is why these data series have a different length and time
scale. Before any time series analysis can be started, the data
series have to be synchronized to the same time scale. Usu-
ally, this is done visually by comparing and correlating each
maximum and minimum in both data sets by hand (wiggle
matching), which includes the human factor of subjective-
ness and is a lengthy process. An automatic and objective
method for verification should be very welcome.

In the last decades some techniques for this kind of corre-
lation and adjustment were suggested. They span graphical
methods (Prell et al., 1986), inverse algorithms, e.g. using
Fourier series (Martinson et al., 1982) and algorithms based
on similarity of data, e.g. sequence slotting (Thompson and
Clark, 1989).

However, we focus on a method based on nonlinear time
series analysis. During our investigations of the method of

Correspondence to:N. Marwan
(marwan@agnld.uni-potsdam.de)

cross recurrence plots (CRP), we have found an interesting
feature. Besides the possibility of application of the recur-
rence quantification analysis (RQA) of Webber and Zbilut
on CRPs (1994), there is a more fundamental relation be-
tween the structures in the CRP and the considered systems.
This feature can be used for synchronization of data sets. Al-
though the first steps of this method are similar to the se-
quence slotting method, their roots are different.

First we give an introduction to CRPs. Then we explain
the relationship between the structures in the CRP and the
systems and illustrate this with a simple model. Finally, we
apply the CRP to geophysical data in order to synchronize
various profiles and to show their practical availability. Since
we focus on the synchronization feature of the CRP, we will
not give a comparison between the different alignment meth-
ods.

2 The Recurrence Plot

Recurrence plots (RP) were firstly introduced by Eckmann
et al. (1987) in order to visualize time dependent behaviour
of orbits xi in phase space. An RP represents the recur-
rence of the phase space trajectory to a state. The recurrence
of states is a fundamental property of deterministic dynami-
cal systems (Argyris et al., 1994; Casdagli, 1997; Kantz and
Schreiber, 1997). The main step in the visualization is the
calculation of theN ×N -matrix

Ri, j = 2
(
ε − ‖xi − xj‖

)
, i, j = 1 . . . N, (1)

whereε is a predefined cutoff distance,‖ · ‖ is the norm (e.g.
the Euclidean norm) and2(x) is the Heaviside function. The
valuesoneandzero in this matrix can be simply visualized
by the colours black and white. Depending on the kind of
application,ε can be a fixed value or it can be changed for
eachi in such a way that in the ball with the radiusε a pre-
defined amount of neighbours occurs. The latter will provide
a constant density of recurrence points in each column of the
RP.

The recurrence plot exhibits characteristic patterns for typ-
ical dynamical behaviour (Eckmann et al., 1987; Webber Jr.
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and Zbilut, 1994): A collection of single recurrence points,
homogeneously and irregularly distributed over the whole
plot, reveals a mainly stochastic process. Longer parallel
diagonals, formed by recurrence points and with the same
distance between the diagonals, are caused by periodic pro-
cesses. A paling of the RP away from the main diagonal
to the corners reveals a drift in the amplitude of the sys-
tem. Vertical and horizontal white bands in the RP result
from states which occur rarely or represent extremes. Ex-
tended horizontal and vertical black lines or areas occur if a
state does not change for some time, e.g. laminar states. All
these structures were formed by using the property of recur-
rence of states. It should be pointed out that the states are
only the “same” and recur in the sense of the vicinity, which
is determined by the distanceε. RPs and their quantitative
analysis (RQA) became better known in the last decade (e.g.
Casdagli, 1997). Their applications to a wide field of mis-
cellaneous research show their suitability in the analysis of
short and non-stationary data.

3 The Cross Recurrence Plot

Analogous to Zbilut et al. (1998), we have expanded the
method of recurrence plots (RP) to the method ofcross re-
currence plots. In contrast to the conventional RP, two time
series are simultaneously embedded in the same phase space.
The test for closeness of each point of the first trajectoryxi
(i = 1 . . . N) with each point of the second trajectoryyj
(j = 1 . . .M) results in aN ×M array

CRi, j = 2
(
ε − ‖xi − yj‖

)
. (2)

The visualization of this is called thecross recurrence plot.
The definition of the closeness between both trajectories can
be varied as described above. Varyingε may be useful to
handle systems with different amplitudes.

The CRP compares the considered systems and allows us
to benchmark the similarity of states. In this paper, we fo-
cus on the bowed “main diagonal” in the CRP, because it is
related to the frequencies and phases of the systems consid-
ered.

4 The line of synchronization in the CRP

Regarding the conventional RP, Eq. (1), one always finds a
main diagonal in the plot because the(i, i)-states are identi-
cal. The RP can be considered as a special case of the CRP,
Eq. (2), which usually does not have a main diagonal as the
(i, i)-states are not identical.

In data analysis one is often faced with time series that
are measured on varying time scales. These could be sets
from borehole or core data in geophysics or tree rings in
dendrochronology. Sediment cores might have undergone
a number of coring disturbances such as compression or
stretching. Moreover, cores from different sites with differ-
ing sedimentation rates would have different temporal reso-
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Fig. 1. Cross recurrence plots of sine functionsf (t) = sin(ϕt) and
g(t) = sin(ϕt+a sin(ψt)), wherea = 0 for the black CRP,a = 0.5
for the green CRP anda = 1 for the red CRP. The variation in the
time domain leads to a deforming of the synchronization line.

lutions. All these factors require a method of synchroniza-
tion.

A CRP of two corresponding time series will not contain
a main diagonal. But, if the sets of data are similar, e.g. only
rescaled, a more or less continuous line in the CRP that is like
a distorted main diagonal can occur. This line contains infor-
mation on the rescaling. We give an illustrative example. A
CRP of a sine function with itself (i.e. this is the RP) contains
a main diagonal (black CRP in Fig. 1). Hence, the CRPs in
the Fig. 1 are computed with embeddings of dimension one;
further diagonal lines from the upper left to the lower right
occur. These lines typify the similarity of the phase space
trajectories in positive and negative time direction.

Now we rescale the time axis of the second sine function
in the following way

sin(ϕt) −→ sin
(
ϕt + a sin(ψt)

)
(3)

We will henceforth use the notion rescaling only in the
mention of the rescaling of the time scale. The rescaling of
the second sine function, with different parametersϕ, results
in a deformation of the main diagonal (green and red CRP
in Fig. 1). The distorted line contains the information on the
rescaling which we will need in order to re-synchronize the
two time series. Therefore, we call this distorted diagonal the
line of synchronization (LOS).

In the following, we present a toy function to explain the
procedure. If we consider a one dimensional case without
embedding, the CRP is computed with

CR(t1, t2) = 2
(
ε − ‖f (t1)− g(t2)‖

)
. (4)
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Fig. 2. Cross recurrence plots of two sine functionsf (t) = sin(ϕt)
andg(t) = sin(ψt2)) which is the basis of the determination of
the rescaling function between both data series. The embedding pa-
rameters were dimensionm = 2, delayτ = π/2 and a varying
thresholdε, in such a way that the CRP contains a constant recur-
rence density of 20%.

If we set ε = 0 to simplify the condition, Eq. (4) gives a
recurrence point if

f (t1) = g(t2). (5)

In general, this is an implicit condition that links the variable
t1 to t2. Considering physical examples of above, it can be
assumed that the time series are essentially the same – this
means thatf = g – up to a rescaling function of time. So we
can state that

f (t1) = f
(
φ(t1)

)
. (6)

If the functionsf (·) andg(·) are not identical, our method
is, in general, not capable of deciding if the difference in
the time series is due to different dynamics (f (·) 6= g(·)) or
if it is due to simple rescaling. So the assumption that the
dynamics are alike up to a rescaling in time is essential, even
though, for some cases wheref 6= g, it can be applied in the
same way. If we consider the functionsf (·) = a · f̄ (·) + b

andg(·) = ḡ(·), wheref (·) 6= g(·) are the observations and
f̄ (·) = ḡ(·) are the states, normalization with respect to the
mean and the standard deviation allows us to use our method.

f (·) = a · f̄ (·)+ b −→ f̃ (·) =
f (·)− 〈f (·)〉

σ (f (·))
(7)

g̃(·) =
g(·)− 〈g(·)〉

σ (g(·))
(8)
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Fig. 3. The rescaling function (black) determined from the CRP
in Fig. 2. This has the expected parabolic shape of the squared
coherence in the time domain. In red the square function.

With ḡ(·) = f̄ (·) the functionsf̃ (·) andg̃(·) are the same af-
ter the normalization. Then our method can be applied with-
out any further modification.

In some special cases Eq. (6) can be resolved with respect
to t1. Such a case is a system of two sine functions with
different frequencies

f (t) = sin(ϕ · t + α) (9)

g(t) = sin(ψ · t + β) (10)

Using Eq. (5) and Eq. (6) we find

sin(ϕ t1 + α)− sin(ψ t2 + β) = 0 (11)

and one explicit solution of this equation is

⇒ t2 = φ(t1) =

(
ϕ

ψ
t1 + γ

)
(12)

with γ = (α − β)/ψ . In this special case the slope of the
main line in a cross recurrence plot represents the frequency
ratio and the distance between the axes origin and the inter-
section of the line of synchronization with the ordinate gives
the phase difference. The functiont2 = φ(t1) (Eq. 6) is a
transfer or rescaling function which allows us to rescale the
second system to the first system. If the rescaling function is
not linear the LOS will also be curved.

For the application, one has to determine the LOS – usu-
ally non-parametrically – and then rescale one of the time se-
ries. In the Appendix we describe a simple algorithm for es-
timating the LOS. Its determination will be better for higher
embeddings because the vertical and cross-diagonal struc-
tures will vanish. Note that the embedding of the time series
involves difficulties. The Takens Embedding Theorem holds
for closed, deterministic systems without noise only. If noise
is present, one needs its realization to find a reasonable em-
bedding. For stochastic time series it does not make sense
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Fig. 4. Reference data series (upper panel) and rescaled data series
before (red) and after (black) using the rescaling function of Fig. 3
(lower panel).

to consider a phase space and so embedding is, in general,
not justified here either (Romano, to be published; Takens,
1981).

The choice of a special embedding lag could be correct
for one section of the data but incorrect for another (for an
example see below). This can be the case if the data is non-
stationary. Furthermore, the choice of method for computing
the CRP and the thresholdε will influence the quality of the
estimated LOS.

The next sections will be dedicated to application.

5 Application to a simple example

First, we consider two sine functions,f (t) = sin(ϕt) and
g(t) = sin(ψt2), where the time scale of the second sine
differs from the first by a quadratic term and the frequency
ψ = 0.01ϕ. Sediment parameters are related to such kind
of functions because gravity pressure increases nonlinearly
with the depth. It can be assumed that both data series come
from the same process and were subjected to different de-
posital compressions (e.g. a squared or exponential increas-
ing of the compression). Their CRP contains a bowed LOS
(Fig. 2). We have used the embedding parameters dimension
m = 2, delayτ = π/2 and a varying thresholdε, so that the
CRP contains a constant recurrence density of 20%. Assum-
ing that the time scale ofg is not the correct scale, we denote
that scale byt ′′. In order to determine the non-parametrical
LOS, we have implemented the algorithm described in the
Appendix. Although this algorithm is still not mature, we ob-
tained reliable results (Fig. 3). The resulting rescaling func-
tion has the expected squared shapet = φ(t ′′) = 0.01t ′′2

(red curve in Fig. 3). Substituting the time scalet ′′ in the
second data seriesg(t ′′) by this rescaling functiont = φ(t ′′),
we get a set of synchronized dataf (t) andg(t) with the non-
parametric rescaling functiont = φ(t ′′) (Fig. 4). The syn-
chronized data series are approximately the same. The cause
of some differences is the meandering of the LOS which it-
self is caused by partial weak embedding. Nevertheless, this
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Fig. 5. ARM data of the boreholes PS 2178–3 GPC and PS 2180–
2 GPC in the Central Arctic Ocean before adjustment.

can be avoided by using a more complex algorithm for esti-
mating the LOS.

6 Application to real data

In order to continue the illustration of the working of our
method we have applied it to real data from geology.

In the following, we compare the method of cross recur-
rence plot matching with the conventional method of visual
wiggle matching (interactive adjustment). Geophysical data
of two sediment cores from the Makarov Basin, central Arc-
tic Ocean, PS 2178-3 and PS 2180–2, were analysed. The
task should be to adjust the data of the PS 2178–3 data (data
lengthN = 436) to the scale of the PS 2180–2 (data length
N = 251) in order to get a depth-depth-function which al-
lows us to synchronize both data sets (Fig. 5).

We have constructed the phase space with six normalized
parameters, low field magnetic susceptibility (κLF ), anhys-
teretic remanent magnetization (ARM), ratio of anhysteretic
susceptibility toκLF (κARM/κLF ), relative palaeointensity
(PJA), median destructive field ofARM (MDFARM ) and
inclination (INC). A comprehensive discussion of the data
is given in Nowaczyk et al. (2001). The embedding was
combined with the time-delayed method according to Tak-
ens (1981) in order to increase further the dimension of the
phase space with the following rule: If we haven parameters
ai , the embedding with dimensionm and delayτ will result
in a (m · n)-dimensional phase space:

x(t) =
(
a1(t), . . . , an(t),

a1(t + τ), . . . , an(t + τ),

a1(t + 2τ), . . . , an(t + 2τ), . . .

a1(t + (m− 1)τ ), . . . , an(t + (m− 1)τ
)

(13)

For our investigation we have used a dimensionm = 3
and a delayτ = 1, which finally led to a phase space of
dimension 18 (3× 6). The recurrence criterion wasε = 5%
nearest neighbours.

The resulting CRP shows a clear LOS and some cluster-
ing of black patches (Fig. 6). The latter occurs due to the
plateaux in the data. The next step is to fit a non-parametric
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Fig. 6. Cross recurrence plot based on six normalized sed-
iment parameters and an additional embedding dimension of
m = 3(τ = 1, ε = 0.05).

function (the depth-depth-curve) to the LOS in the CRP (red
curve in Fig. 6). With this function we are able to adjust the
data of the PS 2178–3 core to the scale of PS 2180–2 (Fig. 8).

The determination of the depth-depth-function with the
conventional method of visual wiggle matching is based on
interactive and parallel searching for the same structures in
the different parameters of both data sets. If the adjustment
does not work in a section of the one parameter, one can use
another parameter for this section which allows the multi-
variate adjustment of the data sets. The recognition of the
same structures in the data sets requires a degree of experi-
ence. However, human eyes are usually better in the visual
assessment of complex structures than a computational algo-
rithm.

Our depth-depth-curve differs slightly from the curve
which was gained by the visual wiggle matching (Fig. 7).
However, despite our (still) weak algorithm used to fit the
non-parametric adjustment function to the LOS, we obtained
a good result of adjusted data series. If they are well adjusted,
the correlation coefficient between the parameters of the ad-
justed data and the reference data should not vary so much.
The correlation coefficients between the reference and ad-
justed data series is about 0.70 – 0.80, where the correlation
coefficients of the interactive rescaled data varies from 0.71
– 0.87 (Table 1). Theχ2 measure of the correlation coef-
ficients emphasizes more variation for the wiggle matching
than for the CRP rescaling.

7 Discussion

Cross recurrence plots (CRP) reveal similarities in the states
of the two systems. A similar trajectory evolution gives a
diagonal structure in the CRP. An additional time dilatation
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Fig. 7. Depth-depth-curves. In black, the curve gained with the
CRP; in red the manually matching result. The green curve shows
the deviation between both results.

or compression of one of these similar trajectories causes
a distortion of this diagonal structure (Fig. 1). This effect
is used to look into the synchronization between both sys-
tems. Synchronized systems have diagonal structures along
and in the direction of the main diagonal in the CRP. Inter-
ruptions of these structures with gaps are possible because
of variations in the amplitudes of both systems. However,
a loss of synchronization is viewable by the distortion of
this structures along the main diagonal (LOS). Fitting a non-
parametric function to the LOS allows us to re-synchronize
or adjust both systems on the same time scale. Although
this method is based on principles from deterministic dynam-
ics, no assumptions about the underlying systems have to be
made in order for the method to work.

The first example shows the obvious relationship between
the LOS and the time domains of the considered time series.
The increasing frequency squared of the second harmonic
function causes a parabolic LOS shape in the CRP (Fig. 2).
Finally, with this LOS we are able to rescale the second func-
tion to the scale of the first harmonic function (Fig. 4). Some
differences in the amplitude of the result are caused by the
algorithm used in order to extract the LOS from the CRP.
However, our concern is to focus on the distorted main diag-
onal and its relationship with the time domains.

The second example deals with real geological data and al-
lows a comparison with the result of the conventional method
of visual wiggle matching. The visual comparison of the ad-
justed data shows a good concordance with the reference and
the wiggle matched data (Fig. 8 and 9). The depth-depth-
function differs up to 20 centimeters from the depth-depth-
function of the wiggle matching. The correlation coefficients
between the CRP adjusted data and the reference data varies
less than the correlation coefficients of the wiggle matching.
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Table 1. Correlation coefficients%1, 2 between adjusted data and
reference data and theirχ2 deviation. The correlation of the inter-
active adjusted data varies more than the automatic adjusted data.
The data length isN = 170 (wiggle matching) andN = 250 (CRP
matching). The difference between both correlation coefficients%1
and%2 is significant at a 99% significance level when the test mea-
sureẑ is greater thanz0.01 = 2.576

Parameter %1, wiggle matching %2, CRP matching ẑ

ARM 0.8667 0.7846 6.032
MDFARM 0.8566 0.7902 4.791
κLF 0.7335 0.7826 2.661
κARM/κLF 0.8141 0.8049 0.614
PJA 0.7142 0.6995 0.675
INC 0.7627 0.7966 1.990

χ2 141.4 49.1

However, the correlation coefficients for the CRP adjusted
data are smaller than these for the wiggle matched data. Al-
though their correlation is better, it seems that the interactive
method does not produce a balanced adjusting whereas the
automatic matching looks for a better balanced adjusting.

These two examples exhibit the ability to work with
smooth and non-smooth data whereby the result will be bet-
ter for smooth data. Small fluctuations in the non-smooth
data can be handled by the LOS searching algorithm. There-
fore, smoothing strategies, like smoothing or parametrical fit
of the LOS, are not necessary. The latter would damp one
advantage of this method, that the LOS is yielded as a non-
parametrical function. A future task will be the optimization
of the LOS searching algorithm in order to get a clear LOS
even if the data are non-smooth. Further, the influence of
dynamical noise to the result will be studied. Probably, this
problem may be bypassed by a suitable LOS searching algo-
rithm too.

Our method has conspicuous similarities with the method
of sequence slotting described by Thompson and Clark
(1989). The first step in their method is the calculation of
a distance matrix, similar to our Eq. (2), which allows the
use of multivariate data sets. Thompson and Clark (1989)
referred to the distance measure as dissimilarity; this is used
to determine the alignment function in such a way that the
sum of the dissimilarities along a path in the distance ma-
trix is minimized. This approach is based on dynamic pro-
gramming methods which were mainly developed for speech
pattern recognition in the 70’s (e.g. Sakoe and Chiba, 1978).
In contrast, RPs were developed to visualize the phase space
behaviour of dynamical systems. Therefore, a threshold was
introduced to make recurrent states visible. Involvement of
a fixed amount of nearest neighbours in phase space and the
possibility to increase the embedding dimensions distinguish
this approach from the sequence slotting method.

0

50

100

150

200

250

A
R

M
 o

f C
or

e 
P

S
 2

17
8−

3
af

te
r 

in
te

ra
ct

iv
e 

ad
ju

st
m

en
t

0

50

100

150

200

250

A
R

M
 o

f C
or

e 
P

S
 2

17
8−

3
af

te
r 

au
to

m
at

ic
 a

dj
us

tm
en

t

0 200 400 600 800 1000 1200
0

50

100

150

200

250

A
R

M
 o

f C
or

e 
P

S
 2

18
0−

2

Depth in Core PS 2180−2  [cm]

Fig. 8. ARM data after adjustment by wiggle matching (top) and by
automatic adjustment using the LOS from Fig. 6. The bottom figure
shows the reference data.

8 Conclusion

The cross recurrence plot (CRP) can contain information
about the synchronization of data series. This is revealed
by the distorted main diagonal which is calledline of syn-
chronization (LOS). After isolating this LOS from the CRP
one obtains a non-parametric rescaling function. With this
function one can synchronize the time series. The underly-
ing more-dimensional phase space allows us to include more
than one parameter in this synchronization method as it usu-
ally appears in geological applications, e.g. core synchro-
nization. The comparison of CRP adjusted geophysical core
data with conventional visual matching shows an acceptable
reliability level of the new method which can be further im-
proved by a better method for estimating the LOS. The ad-
vantage is the automatic, objective and multivariate adjust-
ment. Finally, this method of CRPs can open a wide range of
applications as scale adjustment, phase synchronization and
pattern recognition, for instance in geology, molecular biol-
ogy and ecology.

Appendix: An algorithm to fit the LOS

In order to implement a recognition of the LOS we have used
the following simple two-step algorithm. Denote all recur-
rence points byriα̃,jβ̃ (α̃, β̃ = 1,2, . . .) and the recurrence
points lying on the LOS byriα,jβ (α, β = 1, 2, . . .). Be-
fore the common algorithm starts, find the recurrence point
ri1,j1 next to the axes origin. In the first step, the next re-
currence pointriα̃,jβ̃ , after a previous determined recurrence
pointriα,jβ , is to be determined. This is carried out by a step-
wise increasing of a squared(w × w) sub-matrix where the
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Fig. 9. The adjusted marine sediment parameters. The construction
of the CRP was done with the normalized parameters. In these plots
we show the parameters, which are not normalized.

previous recurrence point is at the(1, 1)-location. The size
w of this sub-matrix increases step-wise until it meets a new
recurrence point or the margin of the CRP. When the next
recurrence pointriα̃,jβ̃ = riα+δi,jβ+δj (δi = w or δj = w) in
thex-direction (y-direction) is found, the second step looks
to see if there are following recurrence points iny-direction
(x-direction). If this is true (e.g. there are a cluster of recur-
rence points) increase further the sub-matrix iny-direction
(x-direction) until a predefined size(w + dx̃) × (w + dỹ)

(dx̃ < dx, dỹ < dy) or until no new recurrence points
are met. This further increasing of the sub-matrix is done
for the bothx- and y-direction. Usingdx̃, dỹ we com-
pute the next recurrence pointriα+1,jβ+1 by determination of
the center of mass of the cluster of recurrence points with
iα+1 = iα + (dx̃ + δi)/2 andjβ+1 = jβ + (dỹ + δj)/2.
The latter avoids the fact that the algorithm is driven around
widespread areas of recurrence points. Instead of this, the
algorithm locates the LOS within these areas. (However, the
introducing two additional parametersdx anddy is a disad-
vantage which should be avoided in further improvements of
this algorithm.) The next step is to set the recurrence point
riα+1,jβ+1 to a new start point and to begin with the step one
in order to find the next recurrence point. These steps are

repeated until the end of the RP is reached.
We know that this algorithm is merely one of many possi-

bilities. The following criteria should be met in order to ob-
tain a good LOS. The number of targeted recurrence points
by the LOSN1 should converge to a maximum and the num-
ber of gaps in the LOSN0 should converge to a minimum.
An analysis with various estimated LOS confirms this re-
quirement. The correlation between two LOS-synchronized
data series arises withN1 and with 1/N0 (the correlation co-
efficient correlates most strongly with the ratioN1/N0).

The algorithm for computation of the CRP and recog-
nition of the LOS are available as Matlab programmes on
http://www.agnld.uni-potsdam.de/~marwan.
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