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Abstract

In this work, different aspects and applications of the recurrence plot analysis are presented.
First, a comprehensive overview of recurrence plots and their quantification possibilities is
given. New measures of complexity are defined by using geometrical structures of recurrence
plots. These measures are capable to find chaos-chaos transitions in processes. Furthermore,
a bivariate extension to cross recurrence plots is studied. Cross recurrence plots exhibit charac-
teristic structures which can be used for the study of differences between two processes or for
the alignment and search for matching sequences of two data series. The selected applications
of the introduced techniques to various kind of data demonstrate their ability. Analysis of re-
currence plots can be adopted to the specific problem and thus opens a wide field of potential
applications.

Regarding the quantification of recurrence plots, chaos-chaos transitions can be found in
heart rate variability data before the onset of life threatening cardiac arrhythmias. This may
be of importance for the therapy of such cardiac arrhythmias. The quantification of recurrence
plots allows to study transitions in brain during cognitive experiments on the base of single
trials. Traditionally, for the finding of these transitions the averaging of a collection of single
trials is needed.

Using cross recurrence plots, the existence of an El Nifio/ Southern Oscillation-like oscilla-
tion is traced in northwestern Argentina 34000 yrs. ago. In further applications to geological
data, cross recurrence plots are used for time scale alignment of different borehole data and
for dating a geological profile with a reference data set. Additional examples from molecular
biology and speech recognition emphasize the suitability of cross recurrence plots.

Kurzfassung

Diese Arbeit beschiftigt sich mit verschiedenen Aspekten und Anwendungen von Recurrence
Plots. Nach einer Ubersicht iiber Methoden, die auf Recurrence Plots basieren, werden neue
Komplexitdtsmafie eingefiihrt, die geometrische Strukturen in den Recurrence Plots beschreiben.
Diese neuen Mafe erlauben die Identifikation von Chaos-Chaos-Ubergéngen in dynamischen
Prozessen. In einem weiteren Schritt werden Cross Recurrence Plots eingefiihrt, mit denen zwei
verschiedene Prozesse untersucht werden. Diese bivariate Analyse ermoglicht die Bewertung
von Unterschieden zwischen zwei Prozessen oder das Anpassen der Zeitskalen von zwei Zeitrei-
hen. Diese Technik kann auch genutzt werden, um dhnliche Abschnitte in zwei verschiede-
nen Datenreihen zu finden. Im Anschluff werden diese neuen Entwicklungen auf Daten ver-
schiedener Art angewendet. Methoden, die auf Recurrence Plots basieren, kénnen an die
speziellen Probleme angepafst werden, so daf$ viele weitere Anwendungen moglich sind.

Durch die Anwendung der neu eingefiihrten Komplexititsmafle konnen Chaos-Chaos-Uber-
gdnge in Herzschlagdaten vor dem Auftreten einer lebensbedrohlichen Herzrhythmusstérung
festgestellt werden, was fiir die Entwicklung neuer Therapien dieser Herzrhythmusstérungen
von Bedeutung sein konnte. In einem weiteren Beispiel, in dem EEG-Daten aus einem kognitiv
orientierten Experiment untersucht werden, erméglichen diese Komplexitdtsmafe das Erken-
nen von spezifischen Reaktionen im Gehirn bereits in Einzeltests. Normalerweise konnen diese
Reaktionen erst durch die Auswertung von vielen Einzeltests erkannt werden.

Mit der Hilfe von Cross Recurrence Plots wird die Existenz einer klimatischen Zirkulation,
die der heutigen El Nifio/ Southern Oscillation sehr dhnlich ist, im Nordwesten Argentiniens
vor etwa 34 000 Jahren nachgewiesen. Auflerdem kénnen mit Cross Recurrence Plots die Zeit-
skalen verschiedener Bohrlochdaten aufeinander abgeglichen werden. Diese Methode kann
auch dazu genutzt werden, ein geologisches Profil mit Hilfe eines Referenzprofiles mit bekan-
nter Zeitskala zu datieren. Weitere Beispiele aus den Gebieten der Molekularbiologie und der
Spracherkennung unterstreichen das Potential dieser Methode.
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measure for recurrence quantification: recurrence rate (percent
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measure for recurrence quantification: trend

measure for recurrence quantification: trapping time

measure for recurrence quantification: length of the longest vertical line
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Chapter 1

Introduction

Mankind has to arrange itself with the phenomena in nature. Scientists ob-
serve various complex processes in nature, e.g. by measuring temperatures,
magnitudes of earthquakes, fluxes of solar radiation, heart rate variability
etc. and try to predict them. Especially since the discussions about greenhouse
effect, global warming and natural hazards the understanding of the relation-
ships in nature have become more important. The investigation of complex
systems in nature and engineering (e.g. turbulence, laser) has revealed that
the underlying nonlinear processes have also to be taken into account in order
to understand and model these systems. In the last decades data analysis us-
ing classical (linear) methods were further improved and enriched with new
methods which were derived from chaos theory. Many analysts have tried to
estimate nonlinear measures and properties e.g. scaling laws or fractal dimen-
sions of natural processes. However, most methods of nonlinear data analysis
(Kantz and Schreiber, 1997) need rather long or stationary data series — both
are not typical features of data series which are gained from nature. Further-
more, it was shown that these methods work very well for appropriate proto-
typical model systems; however, the nature cannot be described in a Laplacian
sense — too many coincidences cover the interrelations, which e.g. overwhelm
the estimation of the dimension of natural processes. Thus, the results of data
analysis should be considered with a healthy portion of scepticism. This fact
challenges to develop new techniques of nonlinear data analysis.

In the last decade a new method based on nonlinear data analysis has be-
come popular: recurrence plots (Eckmann et al., 1987). Recurrence is a fun-
damental property of dissipative dynamical systems. Although small dis-
turbations of such a system cause exponentially divergence of its state, after
some time the system will come back to a state that is arbitrary close to a for-

mer state and pass through a similar evolution. Recurrence plots visualize



such recurrent behaviour of dynamical systems. Although they are not com-
pletely understood, practitioners of this method claim its relevance for short
and nonstationary data. These features are indeed the crucial advantage of re-
currence plots. Zbilut and Webber Jr. (1992) have made an important further
step by introducing a quantification analysis based on recurrence plots, which
became well known in the analysis especially of physiological data. Hundreds
of works and publications using this quantification analysis can be found in
literature. It seems that the reason for this amazing growth in the popularity
of recurrence plots is not only the technical aspect. Recurrence plots can be
very decorative and attract attention.

In this PhD thesis I will present new extensions of recurrence plots and
some applications especially in geology and physiology. A methodical over-
view over recurrence plots and cross recurrence plots will be given in the sec-
ond chapter. The classical quantification analysis will be extended by intro-
ducing new measures of complexity, which can be also used to find chaos-
chaos transitions. Then the concept of cross recurrence plots will be intro-
duced, which allows to find similar epochs in different systems. The third
chapter is assigned to the applications. In the first part, the new recurrence
plot based measures will be used to study physiological data. Analysis of
heart rate variability data will reveal early signs of life threatening cardiac ar-
rhythmias. Regarding event related physiological data (brain potentials), the
introduced measures will allow to study characteristic processes in the brain
during unexpected stimulation even using single trials. Then, cross recur-
rence plots will be applied to geological data. Application to data of modern
and past climate will give indications for the existence of the El Nifio phe-
nomenon in the past. Other applications will present the usage of cross recur-
rence plots in the geological context for time scale alignment of borehole data
and for dating geological profiles. Finally, cross recurrence plots will be ap-
plied to further data from molecular biology and speech recognition in order
to present its ability for the search of matching sequences. In the appendix
my publications which were published or submitted during my PhD are com-
piled. Moreover, a comprehensive bibliography of publications regarding to
recurrence plots and our Matlab toolbox developed for application of recur-
rence and cross recurrence plots are provided through the WorldWideWeb

(http://tocsy.agnld.uni-potsdam.de).


http://tocsy.agnld.uni-potsdam.de

Chapter 2

Data Analysis Basing on
Recurrence Plots

The analysis of phase space trajectories is a basic concept of nonlinear data
analysis. This chapter begins with an introduction of the concept of phase
space reconstruction. Then, a technical and historical review on recurrence
plots is given and the new quantification techniques are presented. This part
is followed by the generalization to cross recurrence plots with their potentials
for application. Finally, rather promising current developments of recurrence
plots will be briefly mentioned.

2.1 Phase Space Trajectories

The states of systems in nature or engineering typically change in time. The
investigation of these mostly complex processes is an important task in numer-
ous scientific disciplines that helps to understand and describe these changes
(e.g. for forecasts). The aim is usually to find mathematical models which can
be adapted to the real processes and used for solving the given problems. The
measuring of a state (which leads to observations of the state but not to the
state itself) and subsequent data analysis are the first steps toward the under-
standing of a process. Well known and approved methods for data analysis are
those based on linear concepts as estimations of moments, correlations, power
spectra or principle components analyses etc. In the last two decades this zoo
of analysis methods has been enriched with methods of the theory of nonlin-
ear dynamics. Some of these new methods base on a metric or topological
analysis of the phase space of the underlying dynamics or on an appropriate
reconstruction of it (Kantz and Schreiber, 1997; Takens, 1981). This section will
focus on the reconstruction of a phase space.

3



The state of a system can be described by its state variables
xL(t), K2(t), ..., ¥ (b), (2.1)

for example the both state variables temperature and pressure for a thermo-
dynamic system. Note that the superscript number is used here as an index of
the component and not as an exponent. The d state variables at time t form a
vector X(t) in a d-dimensional space which is called phase space. This vector
moves in time and in the direction that is specified by its velocity vector

X(t) = 9,%(t) = F(x). (2.2)

The temporary succession of the phase space vectors forms a trajectory (phase
space trajectory, orbit). The velocity field F(x) is tangent to this trajectory. For
autonomous systems the trajectory must not cross itself. The time evolution
of the trajectory explains the dynamics of the system, i. e. the attractor of the
system. If F (x) is known, the state at a given time can be determined by in-
tegrating the equation system (2.2). However, a graphical visualization of the
trajectory enables the determination of a state without integrating the equa-
tions. The shape of the trajectory gives hints about the system; periodic or
chaotic systems have characteristic phase space portraits.

The observation of a real process usually does not yield all possible state
variables. Either not all state variables are known or not all of them can be
measured. Most often only one observation u(t) is available. Since measure-
ments result in discrete time series, the observations will be written in the fol-
lowing as u;, where t = i At and At is the sampling rate of the measurement.
The sampling rate may be constant, resulting in a time series with equidistant
sampling points. However, a constant sampling rate is not always available,
which often leads to problems in applying standard methods of data analysis,
because they require equidistant time series. In general, variables with a sub-
scribed index are in this work time discrete (e.g. X;, R; ;), whereas a braced ¢
denotes continuous variables (e.g. X(t), R(t1, t2)).

Couplings between the system’s components imply that each single com-
ponent contains essential information about the dynamics of the whole sys-
tem. Therefore, an equivalent phase space trajectory, which preserves the topo-
logical structures of the original phase space trajectory, can be reconstructed
by using only one observation or time series, respectively (Packard et al., 1980;
Takens, 1981). A method frequently used for reconstructing such a trajectory
X(t) is the time delay method: X; = (u;, tjy+, ..., Uit (m—1)r)", Where m is the
embedding dimension and 7 is the time delay (index based; the real time delay
is T At). The preservation of the topological structures of the original trajectory

4



is guaranteed if m > 2d + 1, where d is the dimension of the attractor (Takens,
1981).

Both embedding parameters, the dimension m and the delay 7, have to
be chosen appropriately. Different approaches are applicable for the determi-
nation of the smallest sufficient embedding dimension (Cao, 1997; Kantz and
Schreiber, 1997):

1. The first approach may be the computation of some invariant measure on
the reconstructed attractor, which will change if the current embedding
dimension is too small, but which will persist if it is large enough. This
method, however, is rather subjective and usually requires lengthy data
sets.

2. The investigation of the changes in the neighbourhood of phase space
points under changes of the embedding dimension may be applied. In-
appropriate embedding dimensions cause an increasing amount of false
nearest neighbours.

3. The single value decomposition of an initial set of reconstructed phase
space vectors reveals the smallest number of uncorrelated directions in
the phase space, which can be used as an embedding dimension.

At this point, we will only focus on methods which use false nearest neigh-
bours.

There are various methods that use false nearest neighbours in order to de-
termine the embedding dimension. The basic idea is that by decreasing the di-
mension an increasing amount of phase space points will be projected into the
neighbourhood of any phase space point, even if they are not real neighbours
(Fig. 2.1). Such points are called false nearest neighbours (FNNs). The simplest
method uses the amount of these FNN's as a function of the embedding dimen-
sion in order to find the minimal embedding dimension (Kantz and Schreiber,
1997). Such a dimension has to be taken where the FNNs vanish. Other meth-
ods use the ratios of the distances between the same neighbouring points for
different dimensions (Kennel et al., 1992; Cao, 1997).

There are further methods for the determination of attractor dimensions,
e.g. the correlation sum (Grassberger and Procaccia, 1983).

Random errors and low measurement precision can lead to a linear depen-
dence between the subsequent vectors X;. Hence, the delay has to be chosen in
such a way that such dependences vanishes. One possible means of determin-
ing the delay is by using the autocovariance function C(t) = (u; u;_,) (using the
assumption (u;) = 0).



Figure 2.1: Decreasing the embedding dimension causes an increase of false
nearest neighbours (small circles) which fall into the neighbourhood (the cir-
cle or the sliced ball) of a phase space point (the cross); the real nearest neigh-
bours are the larger black dots; (A) m = 1, (B) m = 2 and (C) m = 3. The
neighbourhood in (C) seems to be smaller than in the other two plots, but this
is the result of downscaling.

A delay may be appropriate when the autocovariance approaches zero.
This minimizes the linear correlation between the components but does not
have to mean they are independent. However, the converse is true: if two vari-
ables are independent they will be uncorrelated. Therefore, another well es-
tablished possibility for determining the delay is the mutual information (Fraser
and Swinney, 1986)

1) =~ 3 po.ul®) log 2228 — (log e ) 3
Here py,(7) is the joint probability that u; = ¢ and u;;.r = . p, and py
are the probabilities that u; has the value ¢ and 1), respectively. In order to
simplify the notations, we use py, = py, Pu,.. = py and pu,u,.. = Pe,p(T).
The mutual information is not a function of the variables ¢ and 1) but of the
joint probability py, (7). It is the average of the information about a value
after a delay 7, which can be yielded from the knowledge of the current value.
The best choice for the delay is where I(7) has its smallest local minimum. The
advantage of the mutual information vs. the autocovariance function is that it
finds the nonlinear interrelations and, hence, determines such a delay which
tulfils the criterion of independence.

Some further methods for the reconstruction of the attractor should also be
mentioned. Broomhead and King (1986) have suggested the method of singu-
lar value decomposition (SVD). First, a set X = (¥, X2, ..., Xny) of embedding
vectors for a sufficient large dimension m and with a delay of T = 1 is formed
(note that 7 = 1 means that the real delay corresponds to the time resolution of



the data). Then, the eigenvalues and eigenvectors from the covariance matrix

1
Cc=-—-X'Xx
N

are computed. The amount of non-zero eigenvalues (rank of C) is the value
of the smallest sufficient embedding dimension, and the corresponding eigen-
vectors are the components of the searched phase space reconstruction. The
advantage is that it is not necessary to determine a delay. However, the SVD
minimizes only the linear correlation between the components, which — as
mentioned above — does not mean independence in general (vanishing linear
correlation corresponds to independence only for Gaussian distributed data).
An alternative way for such decomposition is the independent component anal-
ysis (ICA) (Hyvérinen et al., 2001). This decomposition method separates the
signals in nonlinearly uncorrelated (i. e. independent) components, avoiding
the disadvantage of the SVD whereby the components are still dependent. Al-
though this approach cannot be found in any publication, the development of
an embedding method based on ICA seems promising.

Another alternative for a phase space reconstruction is based on mutual
information. Fraser (1989) has generalized the mutual information (2.3) for

higher dimensional joint distributions p,,, (definition correspond-

Uitas s Ui (m—1)t

ing to (2.3)) by definition of the redundancy

Rm (T) _ <10g pui/ Uitrseoor Uit (m—1)1 > (2'4)

pui puH—T e pui+(m—l)’r

and the marginal redundancy
R™(1) = R"™" (1) — R"(7). (2.5)

First, a dimension m must be chosen, which maximizes R" (7). Then, the de-
lay 7 should be selected to maximize the information about the original phase
space that is provided by the reconstructed phase space vectors. This informa-
tion can be estimated with a further measure defined by Fraser (1989). Fraser
has compared his method to that based on SVD and has found that the re-
dundancy approach revealed better reconstructions. This method maximizes
the “number of distinguishable predictions about the state” while the method
based on SVD minimizes only the linear correlation.

For the reconstruction of low-dimensional phase spaces the differential phase
space embedding is suitable, for example X; = (u;, 8;(1;), 0*(u;))”, where the
partial derivatives 0; can be estimated from the differences of the successive
values u; (Mindlin and Gilmore, 1992). The advantage is that the topological



properties of the attractor (e. g. relative rotation, linking properties) can be de-
termined from this embedding. In addition to it the components of this phase
space are natural variables which are used to model the dynamics.

Especially for the application of recurrence plots, Zbilut et al. (2002) sug-
gest a heuristic approach for the determination of the embedding dimension.
First create a recurrence plot (RP) with a high embedding dimension (m =
20...25). Then decrease progressively the dimension until a significant change
in the RP results. Since this change is due to a topological change of the phase
space trajectory caused by the occurrence of FNNS, the current dimension plus
a few dimensions should be sufficient for the embedding. This procedure is
analogous to the statement of Atay and Altintag (1999) that such an embed-
ding would be sufficient, where the RP is cleaned from single points and lin-
ear structures dominate. However, this criterion has to be considered with the
utmost caution because with a high embedding dimension (m = 10 would be
enough) it is possible to create an RP with a large amount of diagonal lines
from random data (e. g. Gaussian noise). In an early work, Zbilut and Webber
Jr. (1992) have tried to use a quantification of RPs in order to find the optimal
embedding parameters. However, this approach fails in the case of nonsta-
tionarity (Trulla et al., 1996; Marwan, 1999).

A phase space reconstruction can be used in order to estimate characteristic
properties of the dynamical system. For reviews on corresponding methods
see for example Eckmann and Ruelle (1985), Abarbanel et al. (1993) or Ott
(1993). Besides, the phase space reconstruction is the starting point for the
construction of a recurrence plot.

2.2 Recurrence Plots

In this section an overview about recurrence plots, recurrence quantification
analysis and their history will be given.

2.2.1 Review of Recurrence Plots

Natural processes can have a distinct recurrent behaviour, e.g. periodicities (as
seasonal or Milankovi¢ cycles), but also irregular cyclicities (as El Nifio South-
ern Oscillation). Moreover, the recurrence of states, in the meaning that states
are arbitrary close after some time, is a fundamental property of determinis-
tic dynamical systems and is typical for nonlinear or chaotic systems (e.g. Ott,
1993; Argyris et al., 1994). The recurrence of states in nature has been known
for a long time and has also been discussed in early publications (e.g. recur-

8
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Figure 2.2: (A) Segment of the phase space trajectory of the Lorenz system
(for standard parameters r = 28, 0 = 10, b = % ; Lorenz, 1963) by using its
three components and (B) its corresponding recurrence plot. A point of the
trajectory at j which falls into the neighbourhood (gray circle in (A)) of a given
point at i is considered as a recurrence point (black point on the trajectory in
(A)). This is marked with a black point in the RP at the location (7, j). A point
outside the neighbourhood (small circle in (A)) causes a white point in the RP.
The radius of the neighbourhood for the RP is ¢ = 5.

rence phenomena in cosmic-ray intensity, Monk and Compton, 1939).

Eckmann et al. (1987) have introduced a tool which can visualize the re-
currence of states ¥; in a phase space. Usually, a phase space does not have
a dimension (two or three) which allows it to be pictured. Higher dimen-
sional phase spaces can only be visualized by projection into the two or three
dimensional sub-spaces. However, Eckmann’s tool enables us to investigate
the m-dimensional phase space trajectory through a two-dimensional repre-
sentation of its recurrences (Fig. 2.2). Such recurrence of a state at time i at
a different time j is pictured within a two-dimensional squared matrix with
black and white dots, where black dots mark a recurrence, and both axes are
time axes. This representation is called recurrence plot (RP). Such an RP can be
mathematically expressed as

R =0 (6— || — %

i %ZER", ij=1...N, (2.6)

where N is the number of considered states x;; ¢; is a threshold distance, || - ||
anorm and O(-) the Heaviside function.

Since R;; =1 (i = 1...N) by definition, the RP has a black main diagonal
line, the line of identity (LOI), with an angle of 7r/4. It has to be noted that a sin-



gle recurrence point at (i, j) does not contain any information about the current
states at the times i and j. However, from the totality of all recurrence points
it is possible to reconstruct the properties of the data. McGuire et al. (1997)
have shown the preservation of the dynamical properties for the distance ma-
trix (2.11). However, the phase space trajectory can also be reconstructed from
the binary RP, where the information about the absolute length of the phase
space vectors is lost. The RP provides information for reordering the indices
of the phase space vectors so that the vectors are sorted by their norm. If the
cumulative distribution of the lengths of the phase space vectors is known,
the restored phase space trajectory will recover its amplitude by equating the
sorted indices with this distribution (Thiel, 2003).

In practice it is not useful and largely impossible to find complete recur-
rences in the sense X; = ¥; (e.g. the state of a chaotic system would not re-
cur exactly to the initial state but approaches the initial state arbitrarily close).
Therefore, a recurrence is defined as a state ¥ jis sufficiently close to ¥;. This
means that those states ¥; that fall into an m-dimensional neighbourhood (e.g. a
ball for the Ly-norm or a box for the L,,-norm) with a radius ¢; centered at X;
are recurrent. These X; are called recurrence points. In (2.6), this is simply ex-
pressed by the Heaviside function and its argument ¢;.

In the original definition of the RPs, the neighbourhood is a ball (i.e. L,-
norm is used) and its radius is chosen in such a way that it contains a fixed
amount of states X; (Eckmann et al., 1987). With such a neighbourhood, the
radius ¢; changes for each X; (i = 1...N) and R;; # R;; because the neigh-
bourhood of X; does not have to be the same as that of ¥;. This property leads
to an asymmetric RP, but all columns of the RP have the same recurrence den-
sity (Fig. 2.5D). Using this neighbourhood criterion we will use the parameter
¢ for the predefinition of the recurrence density. This means that with a given
¢ = 0.15 the real, locally chosen ¢; is adjusted in such a way that the neighbour-
hood covers 15% of all phase space vectors, and thus the recurrence density is
0.15. We denote this neighbourhood as fixed amount of nearest neighbours (FAN).
However, the most commonly used neighbourhood is that with a fixed radius
¢; = ¢,Vi. For RPs this neighbourhood was firstly used by Zbilut et al. (1991).
A fixed radius means that R; ; = R;; resulting in a symmetric RP. The type of
neighbourhood that should be used depends on the application. Especially in
applications of the later introduced cross recurrence plots, the neighbourhood
with a FAN will play an important role.

In order to compute an RP, a norm has to be chosen. The most known
norms are the L1-norm, the Ly-norm (Euclidean norm) and the L.,-norm (Max-
imum or Supremum norm). The neighbourhoods of these norms have differ-

10



Figure 2.3: Three commonly used norms for the neighbourhood with the same
radius around a point (black dot) exemplarily shown for the two-dimensional
phase space: (A) Li-norm, (B) Ly-norm and (C) Ly,-norm.

ent shapes (Fig. 2.3). Considering a fixed ¢, the Lo,-norm finds the most, the
Li-norm the fewest and the Ly-norm an intermediate amount of neighbours.
For computing the RPs, the L,-norm is most commonly applied (Fig. 2.5A),
because it is independent of the phase space dimension and easier to compute
than any other norm. The independence from the dimension will become rel-
evant if in the same analysis different embeddings of a time series have to be
used. Since other norms depend on the dimension, RPs of different embedding
dimensions cannot be compared without a rescaling. But such rescaling is not
necessary for the maximum norm, and the RPs of different embeddings can
be compared directly. Finally, this norm allows to study the RPs theoretically,
because the analytical expressions can be solved in a much simpler way than
those gained by using other norms (Faure and Korn, 1998; Thiel et al., 2002).
The application of the L;-norm has been presented in the publication by Zbilut
et al. (1991). The authors mentioned that by using this norm “an increase in
recurrences becomes more robust in its significance” (Fig. 2.5B).

Special attention has to be turned to the choice of the threshold e. It is
desirable that the smallest threshold possible is chosen. However, the influ-
ence of noise can necessitate a larger threshold, because noise would distort
any existing structure in the RP. Higher threshold may preserve these struc-
tures. Suggestions from literature show that this threshold should be a few
per cent of the maximum phase space diameter (Mindlin and Gilmore, 1992)
and should not exceed 10% of the mean or the maximum phase space diam-
eter (Zbilut and Webber Jr., 1992; Koebbe and Mayer-Kress, 1992). Using the
recurrence point density of the RD, the threshold can be chosen from the anal-
ysis of this measure in respect to a changing threshold (Zbilut et al., 2002). The
threshold can then be found by looking for a scaling region in the recurrence
point density. However, this may not work for nonstationary data. For this
case Zbilut et al. (2002) have suggested to choose ¢ so that the recurrence point
density is approximately 1%. For noisy periodic processes, Matassini et al.
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Figure 2.4: Correlation between the recurrence point at (15,30) and the other
recurrence points in an RP of realizations of the AR(1) process x;11 = 0.6 x; +
0.3&. The embedding parameters are (A) m = 3,7 = 2,¢ = 0.3, By m = 3,
0.35 and (C) m =
proximately constant recurrence rate (0.2). The delay T = 2 corresponds to

T =256 = 5 7 = 2, ¢ = 0.5, which preserve an ap-
the correlation time of x; (when its ACF falls below 1/e). The redundancy
increases with rising embedding dimension. The correlation coefficients are

gained from 1000 realizations of the underlying process.

(2002) have suggested to use the diagonal structures within the RP in order to
determine an optimal threshold. Their criterion minimizes the fragmentation
and thickness of the diagonal lines in respect to the threshold. Recent studies
about RPs in our group have revealed a more exact criterion for choosing this
threshold. This criterion takes into account that a measurement of a process
is a composition of the real signal and some observational noise with stan-
dard deviation. In order to get similar results by using RPs, a threshold has
to be chosen which is five times larger than the standard deviation of the ob-
servational noise (Thiel et al., 2002). This criterion holds for a wide class of

processes.

Since the RP is a representation of multiple tests, it is obvious that an RP
contains an amount of redundancy. This redundancy increases when the em-
bedding dimension increases (Fig. 2.4). This effect can yield distinct diagonal
oriented structures in an RP of a time series of uncorrelated values if the em-
bedding is high, although such diagonal structures are expected only for cor-
relation. The increase of the embedding dimension always cleans up the RP
from single recurrence points (representatives for the uncorrelated states) and
emphasizes the diagonal structures as diagonal lines (representatives for the
correlated states). Therefore, if embedding is used, this effect has to be taken
into account. The embedding has to be chosen so that the dynamics of the sys-
tem will be well presented by its phase space trajectory. An overembedding
has to be avoided because a large amount of diagonal lines may be considered
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as artifacts.

Some authors exclude the LOI from the RP. This may be useful for the quan-
tification of RPs, which we will discuss later. It can also be motivated by the
definition of the Grassberger-Procaccia correlation sum (Grassberger and Pro-
caccia, 1983) which was introduced for the determination of the correlation
dimension D, and is closely related to RPs:

N
. DI el @7
z,i ];jl
The correlation integral excludes the tests of X; with itself. Nevertheless, since
the threshold value ¢ is finite (and normally about 10% of the mean phase
space radius), further long diagonal lines can occur directly below and above
the LOI for smooth or high resolution data. Therefore, the diagonal lines in a
small corridor around the LOI correspond to the tangential motion of the phase
space trajectory, but not to different orbits. Thus, for the estimation of invari-
ants it is better to exclude this entire predefined corridor and not only the LOL
This step corresponds with suggestions to exclude the tangential motion as
it is done for the computation of the correlation dimension (known as Theiler
correction or Theiler window; Theiler, 1986) or for the alternative estimators of
Lyapunov exponents (Gao and Zheng, 1994) in which only those phase space
points are considered that fulfil the constraint |j —i| > w. Theiler (1986) has
suggested using the autocorrelation time as an appropriate value for w, and
Gao and Zheng (1994) state that w = (m — 1)T would be a sufficient approach.
However, in a representation of an RP it is better to keep the LOL Later, this
LOI will gain more importance when extensions of the recurrence plot strate-
gies will be discussed.
In the literature further variations of the recurrence plots can be found:

e Iwanski and Bradley (1998) have defined a variation of an RP with a
corridor threshold [eiy, €out| (Fig. 2.5E),

Ry7 el =@ (1% = | — ) - © (eom = [T = Fi[) . @8)
Those points ¥; are considered to be recurrent that fall into the shell with
the inner radius ¢;, and the outer radius ¢,,;. The authors have sug-
gested to use this kind of RPs in order to study “interesting structures”
in the RP. An advantage of such a corridor thresholded recurrence plot is its
increased robustness against recurrence points coming from the tangen-
tial motion. However, the threshold corridor removes the inner points
in broad diagonal lines, which results in two lines instead of one. These
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RPs are, therefore, not suitable for a quantification analysis. The usage
of a shell as a neighbourhood can be found in an algorithm for comput-
ing Lyapunov exponents from experimental time series (Eckmann et al.,
1986).

Choi et al. (1999) have introduced the perpendicular recurrence plot (Fig. 2.5F)
R = (e~ |7 — %) -5 (% (% = %)) (2.9)

Here, 6 is the Delta function. This recurrence plot contains only those
points ¥; that fall into the neigbourhood of ¥; and lie in the (m — 1)-
dimensional subspace of R™ that is perpendicular to the phasespace tra-
jectory at X;. These points correspond locally to those lying on a Poincaré
section. This criterion cleans up the RP more from recurrence points
based on the tangential motion than the previous corridor thresholded
RPs. The authors have shown the increased efficiency of the perpendic-
ular RPs for their application on estimation of the largest Lyapunov ex-
ponent. Using this kind of an RP, the finding of unstable periodic orbits
(if they exist) is more robust.

The RP contains, finally, tests of all states with each other, which results
in N? tests for N considered states. Still, it is also possible to test each
state with a predefined amount k of subsequent states (Zbilut et al., 1991;
Koebbe and Mayer-Kress, 1992; Atay and Altintas, 1999)

R =0 (e = [|%; — Xivigs |

), i=1...N—kj=1...k. (2.10)

This reveals an (N — k) x k-matrix which does not have to be square
(Fig. 2.5H). The y-axis represents the time distances to the following re-
currence points but not their absolute time. All diagonal oriented struc-
tures in the common RP are now projected to the horizontal orientation.
For ip = 0, the LOI, which was the diagonal line in the common RP, is
now the horizontal line on the x-axis. With non-zero iy the RP contains
recurrences of a certain state only in the predefined time interval after
time iy (Koebbe and Mayer-Kress, 1992).

This representation of recurrences may be more intuitive than the RPs
usually are because the consecutive states are not oriented diagonally.
However, such an RP represents only the first (N — k) states. Mindlin
and Gilmore (1992) have proposed the close returns plot which is, in fact,
such an RP exactly for one dimension. Using this kind of RP, a first quan-
tification approach of RPs (or “close returns plots”) can be found (“close
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returns histogram”, recurrence times). It has been used for the investi-
gation of periodic orbits and topological properties of strange attractors
(Lathrop and Kostelich, 1989; Tufillaro et al., 1990; Mindlin and Gilmore,
1992).

Instead plotting the recurrences with black points, the distances
D/ = ||% — %/ 2.11)

between the states ¥; and X; can be plotted (Fig. 2.5G). Although this
is not a real recurrence plot, it is sometimes called global recurrence plot
(Webber Jr., 2003) or unthresholded recurrence plot (Iwanski and Bradley,
1998). However, it should be termed distance plot. This representation
can also help in studying phase space trajectory. Moreover, it may help
to find an appropriate threshold value .

The windowed and meta recurrence plots have been suggested as means of
investigating an external force or the nonstationarity in a system (Manuca
and Savit, 1996; Casdagli, 1997). The first ones are obtained by covering
an RP with w x w-sized squares (windows) and by averaging the recur-
rence points that are contained in these windows (Casdagli, 1997). Con-
sequently, a windowed recurrence plot is an Ny, x Ny-matrix, where Ny,
is the floor-rounded N/w, and consists of values which are not limited
to zero and one (this suggests a colour-encoded representation). These
values correspond with the cross correlation sum
< N
' = =) z Rﬁ(gkl)w’ﬁ(kl)w, IJ=1... - (2.12)
between sections in X with length w and starting at (I — 1)w + 1 and
(] —1)w + 1 (for cross-correlation integral cf. Kantz, 1994). The meta re-
currence plot as it has been defined by Casdagli (1997) is a distance matrix
derived from the cross correlation sum (2.12),

1
Dy = (cr+ ey —2cy). (2.13)
By applying a further threshold value to D}'/Zf (analogous to Eq. (2.6)), a

black-white dotted representation is also possible.

Manuca and Savit (1996) have gone one step further. They have used
quotients from the cross correlation sum to form a meta phase space. From
this meta phase space a recurrence or non-recurrence plot is created,
which can be used to characterize the nonstationarity in time series. For
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Figure 2.5: Examples of various defined RPs for a section of the x-component
of the Lorenz system (sampling time At = 0.03): (A) RP computed by using
the Loo-norm, (B) RP computed by using the Li-norm, (C) RP computed by us-
ing the Lr-norm, (D) RP computed by using a fixed amount of nearest neigh-
bours (FAN), (E) RP computed by using a threshold corridor [e;,,, €out], (F) per-
pendicular RP (L,-norm), (G) distance plot (unthresholded RP, L,-norm) and
(H) RP where the y-axis represents the relative time distances to the next recur-
rence points but not their absolute time (“close returns plot”, L,-norm). Except
for (F) and (G), the parameter ¢ is chosen in such a way that the recurrence
point density (RR) is approximately the same. The embedding parameters
(m = 5 and T = 5) correspond to an appropriate time delay embedding.

a sufficient explanation the work of Manuca and Savit (1996) is recom-
mended.

Furthermore, the term recurrent plots can be found for RPs in the literature
(e.g. Balasubramaniam et al., 2000). However, this term should not be used for
RPs (it seems that it is sometimes used for return time plots). Finally, it should
be mentioned that the term recurrence plots is sometimes used for another rep-
resentation not related to RPs (e.g. Huang and Sobolev, 2002).

The selection of a specific variant from this variety of RPs depends on
the problem and on the kind of data. Perpendicular RPs are highly recom-
mended for the quantification analysis based on diagonal structures, whereas
corridor thresholded RPs are not suitable for this task. Windowed RPs are
appropriate for the visualization of the long range behaviour of rather long
data sets. If the recurrence behaviour for the states X; within a predefined sec-
tion {Xi 1), ..., Xitiy+k} of the phase space trajectory is of special interest, an
RP with a horizontal LOI will be practical. We will use the standard RP (2.6)
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according to Eckmann et al. (1987) in this work.

It should be emphasized again that the recurrence of states is an important
feature. Beside the recurrence plots, there are some other methods that use
recurrences. For example, the recurrence in the phase space is used for the
recurrence time statistics (Kac, 1947; Gao, 1999; Balakrishnan et al., 2000), first
return map (Lathrop and Kostelich, 1989), space time separation plot (Proven-
zale et al., 1997) or as a measure for nonstationarity (Kennel, 1997; Rieke et al.,
2002, closely related to the recurrence time statistics).

2.2.2 Structures in Recurrence Plots

The initial purpose of RPs is the visual inspection of higher dimensional phase
space trajectories. The view on RPs gives hints about the time evolution of
these trajectories. The advantage of RPs is that they can also be applied to
rather short and even nonstationary data.

The RPs exhibit characteristic large scale and small scale patterns. The first
patterns were denoted by Eckmann et al. (1987) as typology and the latter as
texture. The typology offers a global impression which can be characterized as
homogeneous, periodic, drift and disrupted.

e Homogeneous RPs are typical of stationary and autonomous systems in
which relaxation times are short in comparison with the time spanned
by the RP. An example of such an RP is that of a random time series
(Fig. 2.6A).

¢ Oscillating systems have RPs with diagonal oriented, periodic recurrent
structures (diagonal lines, checkerboard structures). The illustration in
Fig. 2.6B is a rather clear periodic system with two frequencies and a fre-
quency ratio of four (the main diagonal lines are divided by four crossing
short lines; irrational frequency ratios cause more complex periodic re-
current structures). However, even for those oscillating systems whose
oscillations are not easily recognizable, the RPs can be used in order to
find their oscillations (an example can be found in Eckmann et al., 1987,
cp. unstable periodic orbits).

e The drift is caused by systems with slowly varying parameters. Such
slow (adiabatic) change brightens the RP’s upper-left and lower-right
corners (Fig. 2.6C).

e Abrupt changes in the dynamics as well as extreme events cause white
areas or bands in the RP (Fig. 2.6D). RPs offer an easy possibility to find

18



and to assess extreme and rare events by using the frequency of their

recurrences.

Figure 2.6: Characteristic typology of recurrence plots: (A) homogeneous
(uniformly distributed noise), (B) periodic (super-positioned harmonic oscil-
lations), (C) drift (logistic map x;11 = 4x;(1 — x;) corrupted with a linearly
increasing term, cp. Fig. 2.9D) and (D) disrupted (Brownian motion). These
examples illustrate how different RPs can be. The used data have the length
400 (A, B, D) and 150 (C), respectively; no embeddings are used; the thresholds
are e = 0.2 (A,C, D) and ¢ = 0.4 (B).

The closer inspection of the RPs reveals small scale structures (the texture)
which are single dots, diagonal lines as well as vertical and horizontal lines (the
combination of vertical and horizontal lines obviously forms rectangular clus-

ters of recurrence points).

o Single, isolated recurrence points can occur if states are rare, if they do not
persist for any time or if they fluctuate heavily. However, they are not a
unique sign of chance or noise (for example in maps).

o A diagonal line Ry ik = 1 (for k = 1...1, where I is the length of the
diagonal line) occurs when a segment of the trajectory runs parallel to
another segment, i.e. the trajectory visits the same region of the phase
space at different times. The length of this diagonal line is determined
by the duration of such similar local evolution of the trajectory segments.
The direction of these diagonal structures can differ. Diagonal lines par-
allel to the LOI (angle 7/4) represent the parallel running of trajecto-
ries for the same time evolution. The diagonal structures perpendicular
to the LOI represent the parallel running with contrary times (mirrored
segments; this is often a hint for an inappropriate embedding). Since the
definition of the Lyapunov exponent uses the time of the parallel run-
ning of trajectories, the relationship between the diagonal lines and the
Lyapunov exponent is obvious (further explanation in Subsec. 2.2.3).
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o A vertical (horizontal) line R; j x = 1 (for k = 1...v, with v the length of
the vertical line) marks a time length in which a state does not change
or changes very slowly. It seems, that the state is trapped for some time.
This is a typical behaviour of laminar states (intermittency).

These small scale structures are the base of a quantitative analysis of the RPs.

The examples in Fig. 2.6 illustrate how different the small scale patterns
can be. A large amount of single points and the vanishing amount of lines
are caused by heavy fluctuation, which is characteristic for uncorrelated noise
(Fig. 2.6A). The relationship between periodically recurrent structures and os-
cillators is obvious (Fig. 2.6B). The exact recurrent dynamics cause long diago-
nal lines separated by a fixed distance. The nonregular occurrence of short as
well as of long diagonal lines is characteristic for chaotic processes (Fig. 2.6C),
whereas the nonregular occurrence of extended black clusters and extended
white areas corresponds with a nonregular behaviour in the system, which
could be, for example, correlated noise (Fig. 2.6D).

In a more general sense the line structures in an RP exhibit locally the time
relationship between the current trajectory segments. A line structure in an
RP of length I corresponds to the closeness of the segment f(T;(t)) to another
segment f(T»(t)), where Ty (t) and T,(t) are the local time scales (or transfor-
mations of an imaginary absolute time scale t) which preserve that f(T;(t)) ~
f(Ta(t)) for some time t = 1...1. Under some assumptions (e. g. piecewise ex-
istence of an inverse of the transformation T'(t)) the local slope m(t) of a line in
an RP represents the local time derivative of the product of the inverse second
time scale T, ' (#) and the first time scale T (t)

m(t) = 0:T, ' (Tu(t)). (2.14)

We will consider here an illustrative example. A further explanation of the re-
lationship between the slope of the lines and the trajectories is given in the Sub-
sec. about cross recurrence plots (2.3.2). Let us consider a function f(T) = T()
with a section of a monotonical, linear increase Tj;, = t and another (hyper-
bolic) section which follows Ty, = V-2 (Fig. 2.7A) and both sections
visit the same area in the phase space. Since the inverse of the hyperbolic sec-

tion is Tl;y; = /12 — 12, the derivative

t
‘/7’2 _ t2

corresponds to the derivative of a circle line with a radius r, a bowed line

m =0, T}, (Tuyp(t)) = (2.15)

structure with the form of a circle occurs in the RP (Fig. 2.7C).
Summarizing the last mentioned points we can establish the following list
of observations and give the corresponding qualitative interpretation:
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Figure 2.7: (A, C) Illustrative example of the relationship between the slope of
lines in an RP and the local derivatives of the involved trajectory segments.
Since the local derivative of the transformation the time scales of the linear
and the hyperbolic sections corresponds to the derivative of a circle line, a
circle occurs in the RP. (B, D) A corresponding structure found in nature: the
solar insolation on the latitude 44°N for the last 100 kyr (data from Berger and
Loutre, 1991). RPs created without embedding.

1. Homogeneity — the process is obviously stationary

2. Fading to the upper left and lower right corners — nonstationarity; the
process contains a trend or drift

3. Disruptions (white bands) occur — nonstationarity; some states are rare

or far from the normal; transitions may have occurred

4. Periodic patterns — cyclicities in the process; the time distance between
periodic patterns (e. g. lines) corresponds to the period

5. Single isolated points — heavy fluctuation in the process; if only single
isolated points occur, the process may be a random process

6. Diagonal lines (parallel to the LOI) — the evolution of states is similar
at different times; the process could be deterministic; if these diagonal
lines occur beside single isolated points, the process can be from chaos
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(if, in addition, these diagonal lines are periodic, the considered system
contains unstable periodic orbits)

7. Diagonal lines (orthogonal to the LOI) — the evolution of states is similar
at different times but with inverse time; sometimes this is a sign for an
insufficient embedding

8. Vertical and horizontal lines/ clusters — some states do not change or
change slowly for some time (laminar states)

The visual interpretation of RPs requires some experience. The study of
RPs from paradigmatic systems gives a good introduction into characteristic
typology and texture. However, their quantification offers a more objective
way for the investigation of the considered system. With this quantification,
the RPs have become more and more popular within a growing group of sci-
entists who use RPs and their quantification techniques for data analysis (a
search with the Scirus search engine reveals over 200 journal published works
and approximately 700 web published works about RPs).

2.2.3 The Quantitative Analysis of Recurrence Plots

Zbilut and Webber have developed a tool which quantifies the mentioned
structures in the RPs, the recurrence quantification analysis (RQA) (Zbilut and
Webber Jr., 1992; Webber Jr. and Zbilut, 1994). They define measures of com-
plexity using the recurrence point density and diagonal structures in the re-
currence plot: the recurrence rate (or per cent recurrences), the determinism (or
per cent determinism), the divergence (the inverse of the maximal length of di-
agonal structures), the entropy and the trend (or drift). A computation of these
measures in small windows (sub-matrices) of the RP moving along the LOI
yields the time dependent behaviour of these variables. Some studies based
on these RQA measures show that these measures are able to find bifurcation
points, especially chaos-order transitions (Trulla et al., 1996). The RQA is based
on RPs gained by using a fixed threshold ¢, hence the RPs are symmetric. In
the following, these RQA measures are introduced. In the Subsec. 2.2.4 we will
adopt this concept in order to quantify the vertical structures in the RP.

The first measure of the RQA is the recurrence rate or per cent recurrences
(REC)

1 N
RR=—5 5 R, (2.16)
i,j=1

which simply counts the black dots in the RP. It is a measure of the density of
recurrence points and corresponds to the definition of the correlation sum (2.7)
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except that the LOI is included. Nevertheless, the constraint for the correlation
sum, that a large amount of data points are needed, also applies to the RR

when used as an estimation of the correlation sum. In the limit

N—oo W’

1 N
P, = lim < 3 R 2.17)
i,j=1

this measure becomes the probability of finding a recurrence point in the RP
(probability that a state will recur). With the knowledge of the probability p(x)
of the states where dimension m = 1 (or the maximum norm) the recurrence
rate can be analytically computed by using the convolution (Thiel et al., 2003a)

£

p; = /p(x) * p(x) dx. (2.18)

—&

This probability P{ can be used to analytically describe the RQA measures for
some systems (Thiel et al., 2002, 2003a).

The next measures consider the diagonal lines. The frequency distribution
of the lengths I of the diagonal structures in the RP is P*(I) = {I;; i =1...N;},
where N; is the absolute number of diagonal lines (each line is counted only
once in contrast to the cumulative distribution'). Processes with stochastic be-
haviour cause none or very short diagonals, whereas deterministic processes
cause longer diagonals and less single, isolated recurrence points. Therefore,
the ratio of recurrence points that form diagonal structures to all recurrence
points
B Sy, L PE(D)

N pm, e 4
L,j TN,j

DET (2.19)
is introduced as a measure for the determinism (or predictability) in the system.
However, this measure does not have the real meaning of the determinism of
a process. The threshold /,,;, excludes the diagonal lines which are formed by
the tangential motion of the phase space trajectory. For /,,,;, = 1 the determin-
ism is equal to the recurrence rate. The choice of [,,;;, could be made in a similar
way as the choice of the size for the Theiler window (cf. remark on p. 13), but
one has to take into account that a too large I,,;, can worsen the histogram P(I)
and thus the reliability of the measure DET.

!The cumulative distribution for the line length
N
PEI) = S (i~ 1+ 1) P(i)

=1

counts each diagonal line several times, in the sense that a line of length I contains ! lines of
length one, (I — 1) lines of length two, (I — 2) lines of length three .. .one line of length I.
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Diagonal structures show the range in which a segment of the trajectory is
rather close to another segment of the trajectory at a different time; thus these
lines give a hint about the divergence of the trajectory segments. The average
diagonal line length

B Sivy, P
Sy, Pl

is the average time that two segments of the trajectory are close to each other,

(2.20)

and can be interpreted as the mean prediction time. Instead of this average
the RQA uses the maximum length of the diagonal structures or its inverse, the
divergence,

Lyay = max ({l;; i=1...N;}) respective DIV = (2.21)

max

Eckmann has stated that “the length of the diagonal lines is related to the
largest positive Lyapunov exponent” if there is one in the considered system
(Eckmann et al., 1987). Different approaches have been suggested in order to
use these lengths for the estimation of the largest positive Lyapunov exponent
as DIV (Trulla et al., 1996) or the average of the inverse of the half lengths of
the diagonals (Choi et al., 1999, they have defined this measure for perpendic-
ular RPs).

The measure entropy refers to the Shannon entropy of the frequency distri-
bution of the diagonal line lengths

ENTR = — % p()Inp(l) with p(l) =

LI 7 (2.22)
1=l i Z%\ilmin Pe(l)

and reflects the complexity of the deterministic structure in the system. How-
ever, this entropy depends sensitively on the bin number and, thus, may dif-
fer for different realizations of the same process, as well as for different data
preparations.

The measures introduced up to now, RR, DET, L etc. can also be computed
separately for each diagonal parallel to the LOI. The representation of these
diagonalwise computed measures, RR.(t), DET,(t) and L. (t), over the time
distance ¢ from the LOI hints at the determination of the already mentioned
Theiler window (cf. Subsec. 2.2.1). Henceforth, measures with a subscribed
asterisk or index denote diagonalwise computed measures. This diagonal-
wise determination of the RQA measures will receive more importance in the
analysis of CRPs (the definition of the diagonalwise computed measures can
be found in Subsec. 2.3.1, which can be adopted for the RPs). Furthermore,
the measure RR. is closely related to the close returns histogram introduced
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by Lathrop and Kostelich (1989). This can be used to find periodic orbits in
low-dimensional chaotic systems (Lathrop and Kostelich, 1989; Mindlin and
Gilmore, 1992; Gilmore, 1998). Since periodic orbits are more closely related
to the occurrence of longer diagonal structures, the measures DET, and L, are
more suitable candidates for this kind of study. The measure RR, have been
already used by Eckmann et al. (1987) for the study of nonstationarity in the
data.

The last RQA measure is the trend, which is a linear regression coefficient
over the recurrence point density RR, of the diagonals parallel to the LOI (for
definition see Eq. (2.34) in Subsec. 2.3.1) as a function of the time distance be-
tween these diagonals and the LOI

(i = N/2)(RR; — (RR;))
i (i—N/2)?
The trend gives information about a nonstationarity in the process, especially

a drift. The computation excludes the edges of the RP (N < N) because the
statistic lacks by reason of less recurrence points. The choice of N depends

N
TREND = 2i=1 (2.23)

on the studied process. Whereas N — N > 10 should be sufficient for noise,
this difference should be much larger for a process with some autocorrelation
(ten times the order of magnitude of the autocorrelation time should always
be enough). It should be noted that if the time dependent RQA (measures
are computed in shifted windows) is used, TREND will depend strongly on
the size of the windows and may reveal contrary results for different window
sizes.

In some publications a further measure, the ratio, can be found. It is defined
as the ratio between DET and RR (Webber Jr. and Zbilut, 1994) and can be
computed from the frequency distributions of the lengths of the diagonal lines

2 Zfizmm lP€<l)
(5N, 1Pe(1))?

A heuristic study of physiological systems has revealed that this ratio can be

RATIO = N (2.24)

used in order to discover transitions, because it was found that during certain
types of transitions the RR can decrease, whereas DET does not change at the
same time (Webber Jr. and Zbilut, 1994).

Currently, a satisfying theory about the statistics of these measures of com-
plexity has not been developed. Therefore, a reliable statement about the sig-
nificance of these measures cannot be made. Nevertheless, a possibility for
assessing the significance of these measures lies in applying a sufficient surro-
gate test (but this works only for stationary processes).
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In a more theoretical study, Thiel et al. (2003b) have revealed analytical
solutions for the RQA measures of stochastic systems and maps. Gao and
Cai (2000) have studied the relationship between the RQA measures and a
divergence exponent which is closely related to the largest Lyapunov expo-
nent. Furthermore, the clear relationship between the cumulative distribution
(cf. footnote on p. 23) P.(I) and the second order Rényi entropy K, has been
found (Faure and Korn, 1998; Thiel et al., 2003a). Referring to their studies
Thiel et al. (2003a), have stated that the distribution P.(I) is related rather to K;
than to the largest positive Lyapunov exponent.

An appropriate embedding of time series is motivated by the desire to
avoid false nearest neighbours. However, in an RP false nearest neighbours
will occur as black dots, rather short black lines or (for a specific embedding)
as black lines perpendicular to the LOI (i. e. with an angle of —7/4). Whereas
the estimation of some invariants of the RP (like Ky) are independent from the
embedding (and consequently does not need any embedding), the estimation
of the measures RR, DET, L etc. depends on the embedding and needs a suffi-
cient choice (Thiel et al., 2003a).

All these RQA measures are based largely on the distribution of the length
of the diagonal structures in the RP. Additional information about further ge-
ometrical structures as vertical and horizontal elements is not included. In the
following, I will extend this quantitative view to vertical structures and pro-
pose new measures of complexity based on the distribution of the vertical line
length. Since we are using symmetric RPs, we will only consider the vertical
structures in the following.

2.24 New Measures of Complexity: Laminarity and Trapping Time

Let us consider a point ¥; of the trajectory and the set of its associated recur-
rence points R;
Ri:{f]':Ri,jzl;jE[l...N]}. (2.25)

Let us denote subsets of these recurrence points
Vi,j = {] +1...7+ vj: f] ZRi; fj-ﬁ-l .. 'fj-HJj €R;; fj+vj+1 ¢ R,} (2.26)

which form connected vertical structures of the length v;. In continuous time
systems with high time resolution and with an adequately large threshold ¢
a large part of these subsets V; ; usually corresponds to the tangential motion
of the phase space trajectory (cp. Subsec. 2.2.1 on p. 13), i.e. to the sojourn
points described by Gao (1999). However, not all elements of these sets are real
sojourn points. Although sojourn points do not occur in maps, the subsets V,
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are not necessarily empty because of laminar states. Furthermore, the finite
size of the threshold ¢ can pretend a tangential motion, although there are
rather small cycles instead of a tangential motion (e. g. Shilnikov chaos).

Next, we determine the length v; = |V, | of all subsets V; ;. Pi(v) =
{vj; j = 1...Ny} denotes the set of all occurring subset lengths in V; (N is
the absolute number of the vertical lines), and from U ; P;(v) we determine
the distribution of the vertical line lengths P*(v) in the entire RP.

Analogous to the definition of the determinism (2.19), we compute the ratio
between the recurrence points forming the vertical structures and the entire set
of recurrence points
LaM = 2o PP 0)

20=1 vP 5(7))
and call it laminarity LAM. The computation of LAM is realized for those v

(2.27)

that exceed a minimal length v,,;, in order to decrease the influence of sojourn
points. For maps we use v,,;, = 2. LAM is the measure of the amount of
vertical structures in the whole RP and represents the occurrence of laminar
states in the system without, however, describing the length of these laminar
phases. LAM will decrease if the RP consists of more single recurrence points
than vertical structures.

We define the average length of vertical structures (cp. (2.20))

_ zzl;]:vmin UPE(U)
ZZZ)\]:U,,,I‘“ PS(U) '

which we call trapping time TT. The computation also uses the minimal length

TT (2.28)

Umin @sin LAM (2.27). The measure TT contains information about the amount

and the length of the vertical structures in the RP. It measures the mean time

that the system will abide at a specific state (how long the state will be trapped).
Finally, we use the maximal length of the vertical structures in the RP

Vinax = max ({v;; I =1...L}) (2.29)

as a measure which is the analogue to the standard measure L, (2.21).

In contrast to the known RQA measures, these new measures are able to
find chaos-chaos transitions (Marwan et al., 2002b). Hence, these measures
make the investigation of intermittency possible, even if they are only repre-
sented by rather short and nonstationary data series. Since for periodic dy-
namics these measures are zero, chaos-order transitions can also be identified.

An application to the logistic map x,4+1 = ax, (1 — x,) illustrates the po-
tentials of LAM, TT and V,,x. We generate for each control parameter a €
[3.5,4], Aa = 0.0005 a separate time series (Fig. 2.8). In the analyzed range
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Figure 2.8: (A) Bifurcation diagram of the logistic map. (B) Low ordered su-
pertrack functions s;(a) (i = 1...10) and the fixed point of the logistic map
1 —1/a (dashed). Their intersections represent periodic windows, band merg-
ing and laminar states. The dotted lines show a choosing of points of band
merging and laminar phases (@ = 3.678, 3.727, 3.752, 3.791, 3.877, 3.927).

of a, various regimes and transitions between them occur, e.g. accumulation
points, periodic and chaotic states, band merging points, period doublings,
inner and outer crises (Collet and Eckmann, 1980).

Useful tools for studying the chaotic behavior of the logistic map are the
supertrack functions, which are recursively generated from

siv1(a) =asi(a)(1—si(a)), so(a)=z, i=1,2,... (2.30)

Supertrack functions s;(a) represent the functional dependence of stable states
at a given iteration number i on the control parameter a (Oblow, 1988). The
intersection of s;(a) with s;; j(a) indicates the occurrence of a j-period cycle
and the intersection of s;(a) with the fixed-point (1 — 1/a) of the logistic map
indicates the point of an unstable singularity, i. e. laminar behavior (Fig. 2.8,
intersection points are marked with dotted lines).
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RP) of the logistic map for various control pa-

rameters a, near different qualitative changes: periodic-3-window a = 3.830
(A), band merging a = 3.679 (B), supertrack intersection a = 3.720 (C) and
chaos (exterior crisis) a = 4 (D); with embedding dimension m = 3, time delay

T = 1 and distance cutoff ¢ = 0.10.
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Figure 2.10: Selected RQA measures DET, L, and L and the measures LAM,
Vinax and TT. The vertical dotted lines show some of the points of band merg-
ing and laminar behavior (cf. Fig. 2.8), whereby not all of them have been
marked. Whereas DET (A), Lyux (C) and L (E) show periodic-chaotic/ chaotic-
periodic transitions (maxima), LAM (B), Vyuux (D) and TT (F) exhibit in addi-
tion to those transitions (minima) chaotic-chaotic transitions (maxima). The
differences between LAM and V,,, are caused by the fact that LAM measures
only the amount of laminar states, whereas V,,;x measures the maximal dura-
tion of the laminar states. Although some peaks of V,,;x and TT are not at the
dotted lines, they correspond with laminar states (not all can be marked).
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Figure 2.11: The same RQA parameters as shown in Fig. 2.10 under the
influence of additive noise (Gaussian white noise with standard deviation
o = 0.01). All measures show distortions and different levels of decrease due
to the additive noise. LAM, Vi, and TT still reveal the transitions, whereby
Vinax and TT are less distinct.
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We compute the RPs of at least 1 000 data points and with a cut-off distance
¢ = 0.1 (in units of the standard deviation o). Although an embedding is not
necessary for maps (i.e. m = 1), we use here an embedding of m = 3 and
T = 1 according to Trulla et al. (1996). The cut-off distance ¢ is selected to be
10% of the diameter of the phase space. Smaller values would lead to a better
distinction of small variations (e. g. the range before the accumulation point
consists of small variations), but the recurrence point density decreases in the
same way and thus the statistics of continuous structures in the RP becomes
soon insufficient.

For various values of the control parameter a the RPs exhibit specific char-
acteristics (Fig. 2.9). Periodic states cause continuous and periodic diagonal
lines in the RP, but no vertical or horizontal lines. Band merging points in-
ner crises and regions of intermittency represent states with short laminar be-
haviour and cause vertically and horizontally spread black areas in the RP.
Moreover, diagonal lines occur. Fully developed chaotic states (a = 4) cause a
rather homogeneous RP with numerous single points and rare, short, diagonal
or vertical lines. Vertical (and horizontal) lines occur much more frequently
at supertrack crossing points (band merging points included) than in other
chaotic regimes (Fig. 2.8).

We indeed find that the measures LAM, TT and V,,;,, which are based
on these vertical structures, enable the identification of the chaos-chaos tran-
sitions to the laminar states (Fig. 2.10 B, C). The measures show distinct max-
ima or peaks at these transitions. Besides, the measures fall to zero within
the period windows, hence, the chaos-order transitions can also be identified.
Since vertical lines occur much more frequently at inner crisis, band merging
points and in regions of intermittency (i. e. laminar states) than in other chaotic
regimes, TT and V,,x grow up significantly at those points. This can also be
seen by looking at the supertrack functions (Fig. 2.8). Although LAM also re-
veals laminar states, it is quite different from the other two measures because
it does not increase at inner crises.

Although noise would influence the analysis, for small noise levels most of
these transitions can be identified (Fig. 2.11). LAM is more robust against noise
than TT and V... With increasing noise LAM, TT and V,,y decrease, narrow
periodic windows are blurred and local maxima at the regions of intermittency
become progressively irrecognisable.

The behaviour of these measures regarding the control parameter 7 is simi-
lar to some of formerly proposed measures of complexity (Saparin et al., 1994;
Wackerbauer et al., 1994). The Rényi dimension D, of order q < 0, the fluctua-
tion complexity as well as the normalized entropy exhibit local maxima at re-
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gions of intermittency, rapid increase at inner crises and a rapid decrease and
increase at the transitions between chaos and periodic windows. The differ-
ence between the formerly proposed measures and LAM, TT and V,,y is the
amount of data points needed. Where Saparin et al. (1994) and Wackerbauer
et al. (1994) have used more than 100 000 data points in order parameterize the
mentioned regions of interest, 1000 would be enough for the measures based
on RPs.
In the Subsec. 3.1 further illustrations will be presented.

2.2.5 Further Possibilities of Quantification

As already mentioned in the subsection 2.2.3, further measures of complexity
can be defined by using RPs. Faure and Korn (1998) have suggested an estima-
tor for the Kolmogorov-Sinai entropy K, which is based on a scaling law over
the cumulative distribution of the diagonal line lengths. Thiel et al. (2003a)
have proposed three further measures of complexity, which are estimators for
the second order Rényi entropy Kj, the correlation dimension D, and the gen-
eralized mutual information I. These measures are invariants of the RP and do
not need any embedding. The generalized mutual information can be resolved
by the intersection (multiplication) of the RPs and by computing the RR of this
intersection. For some chaotic oscillatory systems, they have found two scaling
regions in the cumulative distribution of the diagonal line lengths. The second
corresponds to Ky, whereas the first one applies to short time scales. This first
scaling region cannot be resolved with the Grassberger-Procaccia algorithm.
Gao (1999) has used the time distance of recurrence points in the vertical di-
rection and calls it recurrence time. He has distinguished between recurrence

times of first type T' and second type T%:
T} =[{i,j: %, % € Ri}| (2.31)

and
T]Z: Hi,]':fi,ijRi,' fj—l ¢R,}] (2.32)

where R; are the recurrence points which belong to the state ¥; (2.25). These
times are the time distances between the state at time i and its recurrences at
time j. In an RP these time distances are expressed as vertical distances of
the recurrence points in a column from the LOIL According to Gao (1999) the
sojourn times have to be removed which leads to the recurrence time of the
second type. However, following the given definition (2.32), all points forming
vertical structures are removed except the first point of these structures, hence,
laminar states are also excluded. If the recurrence times are determined by
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using a perpendicular RP, the effect of the tangential motion will vanish, and
consequently T' ~ T?, although the vertical structures based on the laminar
states still occur. The power law of (T!) respective (T?) over the threshold ¢
corresponds with the information dimension D; (Gao, 1999). This procedure is
called recurrence time statistics and goes back to the middle of the last century
(Kac, 1947).

Likewise, the vertical distribution of the recurrence points is used for the
study of unstable periodic orbits. Lathrop and Kostelich (1989) have intro-
duced a histogram of recurrence points in respect to their time distance to a
reference point (vertical distance to the LOI). This histogram corresponds to
the histogram of T! as well as to the diagonalwise computed recurrence rate
RR; (cp. Eq. (2.34) in Subsec. 2.3.1, which defines RR. for CRPs, but it holds
also for RPs) and has been denoted as “close returns histogram” by these au-
thors. However, they have not used an embedding for this approach, hence,
a lot of false recurrences as well as the effect of the tangential motion will dis-
tort the “close returns histogram”. This is not a real problem for prototypical
model systems, but it complicates the determination of periodic orbits in real
data (for example, the application to economic data does not manifest satisfy-
ing results; Gilmore, 1993, 2001). The analysis of the measures based on the di-
agonal structures DET, and L, the embedding of the data as well as the usage
of perpendicular RPs would significantly improve this technique for finding
unstable periodic orbits.

Using the set of recurrence points R; (2.25) associated to the state at i and
using a linear approach (dynamics is locally linear), Lathrop and Kostelich
(1989) have estimated Lyapunov exponents from the recurrence information.
Additionally, once the Lyapunov exponents are found, they can be used for an
estimation of the information dimension D; (Lathrop and Kostelich, 1989).

The RPs test the distance between all points of the same phase space trajec-
tory. However, why should not it be possible to test each point of one trajectory
with each point of another trajectory in the same phase space? This leads us to
the concept of cross recurrence plots (CRP), which we will focus on in the next
section.

2.3 Cross Recurrence Plots

Starting with the concept of RPs we regard a phase space with one trajectory
X; of length Ny. Now we add a second trajectory ¥; with the length N, into the
same phase space (Fig. 2.12). The test between all points of the first trajectory
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Figure 2.12: (A) Segments of the phase space trajectories of the El Nifio South-
ern Oscillation Index (SOI, black line) and a precipitation time series of San
Salvador de Jujuy (Argentina, gray line) by using time delay embedding
(smoothed, monthly data; T = 7 months). In (B) the corresponding cross recur-
rence plot is shown. If a point of the precipitation trajectory at j (black point on
the gray line in (A)) falls into the neighbourhood (gray circle in (A)) of a point
of the SOI trajectory at 7, in the CRP at the location (i, j), a black point will be
marked. A point outside the neighbourhood (small circle in (A)) is marked as
a white point in the CRP. For creating this CRP the FAN criterion with ¢ = 0.15
is used.

with all points of the second trajectory leads to the cross recurrence plot (CRP)

CR;;" =0 (e — % - yill), % 7 eR",
i=1...Ny, j=1...Ny. (2.33)

The notation is analogous to the definition of RPs (2.6). If in the second trajec-
tory a state at time j is close to a state on the first trajectory at time i, a black dot
will be assigned to the matrix CR at location (i, j). This occurrence of neigh-
bours in both trajectories is not a “recurrence” of states, hence, the matrix (2.33)
does not represent recurrences but the conjunctures of states of both systems.
Therefore, this representation is not really a “cross recurrence plot”. Never-
theless we call it “cross recurrence plot” in order to follow the way of a gen-
eralization of RPs and because of the occurrence of the term “cross recurrence
quantification” in the literature for the parallel concept of the generalization of
the RQA (Zbilut et al., 1998). The vectors ¥ and jj do not need to have the same
length, hence the matrix CR is not necessarily square. This extension of RPs
was first used by Zbilut et al. (1998) for the cross recurrence quantification. Inde-
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pendently of their work, the concept of cross recurrence plots also surfaces in
Marwan (1999).

Both trajectories for the creation of a CRP have to represent the same dy-
namical system with equal state variables because they are in the same phase
space. This must be taken into account if time series of different measure-
ments (e. g. temperature and pressure) are involved. For the embedding and
the following CRP analysis the time series can be taken from different mea-
surements if they are components or state variables of the same system. A
precedent data normalization solves the problem of different units. However,
the application of CRPs to absolutely different measurements, which are not
observations of the same dynamical system (e. g. a stocks index and the preces-
sion of the Earth’s rotation), is not possible. For such different kinds of data the
presently developed concept of intersected RPs can be used (cf. Subsec. 2.4).

Assuming that both trajectories come from the same process but different
absolute values, the CRP will not become the expected RP if a fixed threshold ¢
is chosen. Therefore, it is necessary to adapt both trajectories to the same range
of values, e. g. by using a normalization to the standard deviation. However,
the application of a fixed amount of nearest neighbours (FAN), i.e. ¢; changes
for each state x;, solves this problem automatically, and a modification of the
amplitudes is not necessary. The latter choice of a neighbourhood has the ad-
ditional advantage of working well for slowly changing trajectories (e. g. drift).

Since the values of CR;; (i = 1...N) are not necessarily one, the black
main diagonal usually vanishes. As we will discuss in Subsec. 2.3.2, the line
of identity (LOI) can be replaced by the line of synchronization (LOS) and may
ultimately not have the angle 77/4. Apart from that, the statements given in the
subsection about the structures in RPs (Subsec. 2.2.2) hold also for the CRPs.
However, the lines which are more or less diagonally orientated are here of
major interest too. They represent segments on the both trajectories, which run
parallel for some time. The frequency and lengths of these lines are obviously
related to a certain similarity between the dynamics of both systems.

An additional time dilatation or time compression of one of the trajectories
causes a distortion of the main diagonal line (cp. remarks about the relation-
ship between the slope of RP lines and the local derivatives of the trajectories
in Subsec. 2.2.2). This case will be discussed in subsection 2.3.2. In the follow-
ing subsection we presume that both systems have the same time scale (equal
length N and sample time At), hence, the CRPisa N x N array.
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2.3.1 Measures for Similarities Between Two Observed Processes

The long diagonal structures in the CRP reveal similar time evolution of the
trajectories of both processes. It is obvious that a progressively increased sim-
ilarity between both processes causes an increase of the recurrence point den-
sity along the main diagonal CR;; (i = 1...N) until a black straight main
diagonal line occurs (which would be in fact the LOI, and the CRP becomes an
RP). Thus, the occurrence of diagonal lines in a CRP can be used in order to
benchmark the similarity between the considered processes.

In order to quantify this similarity some quantitative measures have to be
defined. Since we use the occurrence of the more or less discontinuous di-
agonal lines, the RQA measures (cf. Subsec. 2.2.3) should be suitable for this
purpose after some modifications. Especially, they have to be modified in such
a way that they can be used as a diagonalwise criterion for the vanishing di-
agonal lines (Marwan and Kurths, 2002).

Let us consider a diagonal CR;; (j —i = k = const.) which is parallel to
the main diagonal and has a time distance t = k At from the main diagonal.
The recurrence points in this diagonal correspond with tests between the time
delayed trajectories (delay t). In the following, some RQA measures will be
redefined for these diagonals. Hence, these measures will be functions of the
distance k from the main diagonal. Using this approach it is possible to assess
the similarity in the dynamics depending on a certain time delay.

Following this procedure we need to define the frequency distributions of
the diagonal line lengths P¢(1) = {l;; i = 1...N;} (N is the absolute number
of diagonal lines) for each diagonal parallel to the main diagonal CRTJT “(j—
i = k). For k = 0 this line is the LOI, k > 0 diagonals above and k < 0
diagonals below the LOI, which represent positive and negative time delays,
respectively.

The recurrence rate RR is now modified to

N—k
RR; = RR.(f) = ﬁ T CR' = TP (234
j—i=k

and reveals the probability of the occurrence of similar states in both systems
with a certain delay t = k At. A high density of recurrence points in a diag-
onal results in a high value of RR,. This is the case for the systems whose
trajectories often visit the same phase space regions.
Analogous to the RQA the determinism
51t L PE()

lmin

DETy = e
S TP

(2.35)
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is the proportion of recurrence points forming long diagonal structures to all
recurrence points, but here it is constrained to the considered diagonal. Smooth
trajectories with long autocorrelation times will result in a CRP with long diag-
onal structures, even if the trajectories are not linked to each other (this effect
corresponds to the tangential motion of one trajectory). In order to avoid the
counting of such “false” diagonals, the lower limit for the diagonal line length
l,.in should be of the order of the autocorrelation time.

Stochastic as well as heavily fluctuating processes cause none or only short
diagonals, whereas deterministic processes cause longer diagonals. If two de-
terministic processes have the same or similar time evolution, i. e. parts of the
phase space trajectories meet the same phase space regions for certain times,
the amount of longer diagonals increases and the amount of shorter diagonals
decreases. The average diagonal line length
_ R z,f,nlpe( ) (2.36)

X 1 Pe(l)

min

Ly =

quantifies the duration of such a similarity in the dynamics. A high coinci-
dence of both trajectories increases the length of these diagonals. Besides, the
entropy of the probability P;(!) can also be defined. Still, we focus here on the
first three measures.

High values of RR, represent high probabilities of the occurrence of the
same state in both processes, high values of DET, and L. represent a long
time span of the occurrence of a similar dynamics in both processes. Whereas
DET, and L, are sensitive to fast and highly fluctuating data, RR, measures
the probabilities of the occurrence of the same states in spite of these high
fluctuations (noisy data). It is important to emphasize that these parameters
are statistical measures and that their validity increases with the size of the
CRP, i. e. with the observation length.

An additional CRP

CR;; =0 (& — ||i + 7]|) (2.37)

with opposite signed second trajectory —ij; allows to distinguish positive and
negative relations between the considered trajectories (Marwan and Kurths,
2002). In order to recognize the measures for both possible CRPs, we add the
superscript index + to the measures for the positive linkage and the super-
script index — for the negative linkage, e. g. RR;r and RR, .

Another approach used to study the positive and negative relations be-
tween the considered trajectories involves using the composited measures for
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the recurrence rate

c + _
RRS = N NE sz (CR ) , (2.38)
the determinism
DET{ = DET; — DET, (2.39)

and the average diagonal length
Ly=L—L, (2.40)

where P{"(1) is the histogram of the diagonal line lengths in CR?,E]- (j—i=
k), as it is used in Marwan et al. (2003) and in the example in Subsec. 3.2.2.
This representation is similar to those of the cross correlation function and is
more intuitive than the separate representation of RR}, RR; etc. However, for
the investigation of interrelations based on even functions, these composited
measures are not suitable.

A further substantial advantage of this method is its capability of also find-
ing nonlinear similarities in short and nonstationary time series with high
noise levels as they typically occur, e.g., in biology or earth sciences (exam-
ples in Subsec. 3.2.1).

However, the shortness and nonstationarity of data limit this method as
well. As mentioned, one way to reduce problems accompanying nonstation-
ary data is the alternative choice of a neighbourhood with a fixed amount of
neighbours.

2.3.2 Time Scale Alignment of Time Series

In data analysis one is often faced with time series measured on varying time
scales. These could be, for example, sets from borehole or core data in geo-
physics or tree rings in dendrochronology. Sediment cores might have un-
dergone a number of coring disturbances such as compression or stretching.
Moreover, cores from different sites with differing sedimentation rates would
have different temporal resolutions. All these factors require a method of syn-
chronizing or aligning the time scales.

Regarding the conventional RP (2.6), a black main diagonal line (LOI) can
always be found in the plot because of the identity of the (i, i) states. The RP
can be considered as a special case of the CRP which usually does not have a
main diagonal because the (i, ) states are not identical.

Assuming two identical trajectories, the CRP is the same as the RP of one
trajectory and contains an LOL If we slightly modify the values of the second
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Figure 2.13: Cross recurrence plots of sine functions f(t) = sin(¢t) and g(t) =
sin(@t +asin(yt)), whereas (A)a = 0, (B) a = 0.5 and (C) 2 = 1. The variation
in the time domain leads to a deforming of the synchronization line. The CRPs
are computed without embedding.

trajectory, the LOI will become somewhat disrupted. This leads to the situa-
tion discussed in Subsec. 2.3.1. However, if we do not modify the amplitudes
but stretch or compress the second trajectory slightly, the LOI will be kept con-
tinuous but not as a straight line with an angle of 77/4. Rather this line can
be bowed (Fig. 2.13). As we have already seen in the Subsec. 2.2.2, the local
slope of lines in an RP as well as CRP corresponds to the transformation of the
time axes of the two considered trajectories (Eq. (2.14); Marwan et al., 2002a).
A time shift between the trajectories causes a dislocation of the LOS. Hence,
the LOS may lie rather far from the main diagonal of the CRP.

For illustration, let us consider two sine functions where we rescale the
time axis of the second sine function in the following way

sin(pt) — sin (¢t + asin(t)). (241)

The terms rescaling and synchronization are used here in the meaning of the
rescaling of the time scale. The rescaling of the second sine function with dif-
ferent parameters a results in a deformation of the main diagonal (Fig. 2.13).
The distorted line contains the information on the rescaling, which we need in
order to re-synchronize the two functions. Therefore, this distorted diagonal
is called line of synchronization (LOS).

In the following, we present a toy model in order to explain the relation be-
tween the time series f(t1), g(t2) and the LOS t;, = ¢(t1). In a one dimensional
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situation, the CRP is simply

CR(t,12) = O(c — | f(tr) — g(t2)]])- (2.42)

Provided that we set ¢ = 0 to simplify the condition, (2.42) will deliver a
recurrence point if

f(t1) = g(t2). (2.43)

In general, this is an implicit condition that links the variable ¢; to ;. Consid-
ering the physical examples above it can be assumed that the time series are
essentially the same; that means that f = g, up to a rescaling function of time.
So we can state

f(t) = f(d(t)). (2.44)

In some special cases (2.44) can be resolved with respect to ¢;. An example
of such a special case is a system of two sine functions with different frequen-
cies

f(t) =sin(p-t+a), g(t)=sin(y-t+p) (2.45)

Using (2.43) and (2.44) we find
sin(@t +a) —sin (Pt + ) =0, (2.46)

and one explicit solution of this equation is

= h=¢(h)= <§t1 +7/> (2.47)
with y = % . In this special case the slope m of the main line in the corre-
sponding cross recurrence plot represents the frequency ratio, and the distance
between the origin of the axes and the intersection of the LOS with the ordi-
nate reveals the phase difference. Considering the time transformation func-
tions Ty = @ -t+ «a and T, = -t + 3 whithin the equations (2.45) and the
inverse T, | = %, we get the same result for the slope of the LOS by using
the derivative (2.14)

m=9,T, (Th(t) = L. (2.48)

n

The function t, = ¢(t1) is the transfer or rescaling function which allows
to rescale the second system to the first system. If the rescaling function is not
linear, the LOS will also be curved.

If the functions f(-) and g(-) are not identical, our method will in general
not be capable of deciding whether the difference in the time series is due
to different dynamics (f(-) # g(-)) or to simple rescaling. So the assump-
tion is essential that the dynamics remain equal up to a rescaling in time (the
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underlying systems must be the same). Nevertheless, for some cases where
f # g, the method can be applied in the same way. If we consider the functions
f(:) =a-f(-)+band g(-) = g(-), whereby f(-) # g(-) are the observations
and f(-) = g(-) are the states, normalization, with respect to the mean and the
standard deviation, will allow to use our method,

fO = a0+ — g = LU 249
g() = %. (2.50)

With ¢(-) = f(-) the functions f(-) and §(-) are the same after the normal-
ization, hence, our method can be applied without any further modification.

For application one has to determine the LOS — usually non-parametrically
—and then rescale one of the time series by using this function (for an illustra-
tion cf. Subsec. 3.3.1). This connection between the local slope of the LOS and
the relation between the segments of the trajectories also applies to the other
line structures in CRPs as well as RPs (cp. Fig. 2.7 on p. 21).

This technique can also be used in order to find the closest matching seg-
ments in two data series. For example, in the geological framework there could
be a long reference data series which has a time scale and a second but short
profile with the same physical measurement. The task lies in finding the sec-
tion in the reference data which matches to the second profile in order to yield
the corresponding time scale for the profile. This section can be found by look-
ing for a more or less continuous black line in the CRP (the dislocated LOS).
An example is given in Subsec. 3.3.2.

The CRP based alignment of time series has conspicuous similarities with
the method of sequence slotting described by Thompson and Clark (1989). The
first step in their method is the calculation of a distance matrix (2.11), which
allows the use of multivariate data sets. Thompson and Clark (1989) referred
to the distance measure as dissimilarity. It is used to determine the alignment
function in such a way that the sum of the dissimilarities along a path in the
distance matrix is minimized. This approach is based on dynamic program-
ming methods which were mainly developed for speech pattern recognition
in the 1970’s (e. g. Sakoe and Chiba, 1978). In contrast, RPs were developed
to visualize the phase space behaviour of dynamical systems. Therefore, a
threshold was introduced to make recurrent states visible. The involvement
of a FAN in the phase space and the possibility of increasing the embedding
dimensions distinguish my approach from the sequence slotting method.
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2.4 Current Developments of Recurrence Plots

During the last five years, a rather promising development of recurrence plots
has been in progress. These new findings work toward a better understanding
of the structures found in RPs. As already explained in the subsection about
the RQA (Subsec. 2.2.3), an RP can be used in order to obtain some properties
of dynamical systems, such as the Rényi entropy, the correlation dimension
or the information dimension (Faure and Korn, 1998; Gao, 1999; Thiel et al.,
2003a). The most recent development in our group proposes intersections of
RPs and time shifted RPs
R RS (2.51)

which can be used for the estimation of the generalized mutual information
(Thiel et al., 2003a). Furthermore, this approach can also be applied to differ-
ent phase space trajectories, which leads to a completely new concept of cross
recurrence plots (Romano et al., 2003, this kind of cross recurrence plot is de-
noted as XRP). Based on this new approach, the cross mutual information and
Rényi entropy can be estimated. In addition, the XRP can be used to study
phase synchronization. The XRP can be applied to measurements of differ-
ent systems whose observations cannot be considered as state variables of the
same system. XRPs are not restricted to only two systems; it is a multivariate
analysis tool. In contrast to CRPs, XRPs can only be applied to time series of
equal time scale, length and sample resolution.

The development of RP based methods is not yet concluded. The last three
years in particular have shown that large potential lies in the analysis of RPs.

2.5 Software and Applications

Since RPs are especially suitable for the analysis of short and nonstationary
data, their application to real measurements in numerous scientific fields is
obvious. Moreover, a representation of an RP displays amazing structures and
can be rather decorative. Therefore, RPs and their quantification analysis have
become increasingly present in the scientific community.

2.5.1 Free Software for Recurrence Plot Based Analysis

Free available software for the creation of RPs and their quantitative analysis
facilitates the spread of their application (no requirement on completeness):

e RQA Software 7.1 (by Charles Webber Jr.)
allows for the creation of RPs as well as CRPs and their quantification,
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only for DOS, commandline based
http://homepages.luc.edu/ cwebber

e Visual Recurrence Analysis 4.2 (by Eugene Kononov)
creation of RPs and computing the RQA measures, only for MS Win-
dows, graphical user interface

http://home.netcom.com/~eugenek

e CRP Toolbox 4.3 (by Norbert Marwan)
allows for the creation of RPs as well as CRPs, quantification analysis of
RPs and CRPs includes the new measures of complexity proposed in this
work, time scale alignment tool based on CRPs and further useful tools
and methods of nonlinear time series analysis and data preparation are
provided, platform independent (for Matlab), both usage of graphical
user interface as well as commandline call is possible

http://tocsy.agnld.uni-potsdam.de

A comparison between some of these programmes can be found in (Belaire-
Franch and Contreras, 2002).

2.5.2 Cross Recurrence Plot Toolbox

During my study with recurrence plots, I have developed a comprehensive
Matlab toolbox. This toolbox contains various algorithms for creating RPs
and CRPs by providing several norms, criteria of neighbourhoods and various
types of RPs and CRPs. The tool for quantification of RPs and CRPs includes
the measures of complexity proposed in this work (LAM, TT, Viuax) as well as
the known RQA measures (RR, DET, L, ENTR, TREND etc.). These measures
can be computed for shifted windows as well as for diagonals of the RPs and
CRPs. An alignment tool enables the search of a non-parametric LOS in CRPs.
Further useful tools for data preparation and nonlinear data analysis are in-
cluded, like tools for normalization of data, aligning the length of two time
series, computation of multi-dimensional histograms, multi-dimensional mu-
tual information, entropies, 2D and 3D phase space representation, estimation
of AR coefficients etc.

This toolbox is available through the WorldWideWeb. An online and print-
able manual with illustrative examples as well as an extensive bibliography of
applications of RPs can also be found there. The current address is

http://tocsy.agnld.uni-potsdam.de.
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Several scientists from Canada, China, Germany, Italy, Poland, United King-
dom, USA and others are applying this toolbox for the analysis of data from,
for example, economics, climate, solar physics, cardiology or hardware analy-
sis.

2.5.3 Application Potentials

The search for applications via search engines in the World Wide Web reveals
numerous workings which have used RPs (at present, the Scirus search engine
tinds over 200 journal published articles and approximately 700 web published
works). RPs and the RQA are most popular in physiology. However, first
applications in economy, ecology, astrophysics and geology can also be found.
In the following, a small selection of applications of RPs and the classical RQA
gives an overview about the applicability of the method. In the next chapter
some special applications of the new proposed RP measures as well as of the
CRPs are presented.

One of the first applications of RPs has been the analysis of heart beat inter-
vals (Zbilut et al., 1991). This study has revealed typical RPs for cardiac trans-
plant patients and cardiomyopathy patients who underwent volume loading.
Applying the RPs, the authors have inferred that the dimensionality and en-
tropy of the heart beat variations decrease during a significant cardiac event
like myocardial infarction or ventricular tachycardia.

In further physiology research RPs as well as RQA have been applied to,
for example, electromyographic data (Webber Jr. et al., 1995), measurements
based on eye movements (optokinetic nystagmus, Shelhamer, 1997), data of
postural fluctuations (Riley et al., 1999), EEG data (Babloyantz, 1991; Thomas-
son et al., 2001) or neuronal signals (Faure and Korn, 2001), in order to study
the interacting physiological processes.

The RPs have been used for research in economics. For example, RPs
have been inspected visually in order to find chaos in economics time series
(Gilmore, 1993, 2001). Whereas these visual inspections could not find chaos in
the considered economic time series (e. g. unemployment rate, private domes-
tic investment, exchange rate), a combined “close returns” and surrogate test
seems to reveal nonlinear dependences among data of exchange rates. Other
studies of exchange data have used the RQA and have also found significant
correlations between various currencies (Strozzi et al., 2002). In contrast to the
results of Gilmore (2001) the research of others who used the RQA has revealed
chaos in exchange data (Hotyst et al., 2001; Belaire-Franch et al., 2002).

An astrophysical application of RPs has used the radiocarbon data of the
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last 7000 years (Kurths et al., 1994). The atmospheric radiocarbon is influ-
enced by the variation of solar activity and exhibits century-scale variations
of chaotic nature. The main findings based on the RP analysis and a surro-
gate test reveal that these variations are indeed different from linear processes
and that there are different types of large events affecting their tendency to
recur (e. g. the Maunder Minimum seems to be unique, whereas the Oort and
Dalton Minima as well as the Medieval Maximum tend to recur). Moreover,
the authors have found that the present day data are similar to the Medieval
Maximum.

An RQA has applied to a DNA sequence of the genome Caenorhabditis ele-
gans (Frontali and Pizzi, 1999). Caenorhabditis elegans is a small (approximately
1 mm long) soil nematode found in temperate regions. This analysis has re-
vealed long-range correlations in the introns and intergenic regions, which
are caused by the frequent recurrence of oligonucleotides (a short sequence of
some hundreds of nucleotides) in these regions. The recurrence of the oligonu-
cleotides has been discovered by computing the recurrence rate for overlap-
ping windows which cover the DNA sequence.

Elwakil and Soliman (1999) have applied RPs to time series generated by
models of the Twin-T, Wien-bridge and other chaos generating electronic os-
cillator circuits. Through visual inspection of the RPs, the chaotic behaviour
of the model results has been confirmed. RPs have been used to estimate opti-
mal embedding parameters and vicinity threshold which are used for a noise
reduction scheme in human speech signals (Matassini and Manfredi, 2002).

An analysis based on RPs has been used to study monopole giant reso-
nances in atomic nuclei (Vretenar et al., 1999). Due to the fact that a nu-
cleus consists of protons and neutrons, the oscillations can be divided into two
modes: (1) the densities of protons and neutrons oscillates in phase (isoscalar
mode) and (2) the two densities have opposite phases (isovector mode). Both
of these modes exhibit significantly different RPs. Where the oscillation of the
isoscalar mode has an RP typical for regular oscillations, the RP for the isovec-
tor mode uncovers nonstationary and chaotic dynamics.

Further applications can be found in chemistry. Rustici et al. (1999) have
applied the RQA to the Belousov-Zhabotinsky reaction and have studied the
transitions during its chemical evolution in an unstirred batch reactor. Us-
ing the RQA measures, the transitions between periodic, quasiperiodic and
chaotic states could be observed. Other applications in chemistry/ molecular
biology concern the dynamics of chemical processes, for example in molecu-
lar dynamics simulations of polypeptides (Giuliani and Manetti, 1996; Manetti
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etal.,2001). Applying the RQA to glycoproteins of the paramyxovirus? has un-
covered the interaction between specific glycoprotein partners (Giuliani and
Tomasi, 2002).

There are many examples of further research which uses RPs and RQA. A
more extensive bibliography can be found on the web site of the CRP tool-
box (http://tocsy.agnld.uni-potsdam.de) or on the recurrence plot web

site (http://www.recurrence-plot.tk).

2The family of Paramyxoviridae contains viruses that induce a wide range of distinct clinical
illnesses in humans, for example the measles virus, mumps virus and the parainfluenza viruses
(Source: http://web.uct.ac.za/depts/mmi/stannard/paramyx.html).
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Chapter 3
Applications

The high potential for the analysis based on recurrence plots arises with their
applicability. Hundreds of applications of recurrence plots and recurrence
quantification analysis, especially to physiological data, represent the increas-
ing importance of these methods. In this chapter selected applications of the
newest strategies based on recurrence plots to geological and physiological
data are presented. Methods of linear and nonlinear data analysis mostly fail
in these applications because of the rather short length of the time series and
their nonstationarity. Except for the examples in the Subsec. 3.3.2 all results
of these applications are already published or in press. The corresponding
articles are attached in the Appendix.

3.1 Laminarity and Trapping Time

Recent studies suggest also including the vertical structures of RPs into the
RQA. In order to quantify them, the new measures laminarity and trapping
time were introduced (definitions in Subsec. 2.2.4). The analysis of the verti-
cal structures in RPs with these measures enables a detection of chaos-chaos
transitions as they occur as laminar states. The suitability of these measures is
presented in the following two applications.

3.1.1 Analysis of VT Heart Rate Intervals

A major challenge in physiology is the analysis of cardiac time series. Heart
rate variability (HRV) typically shows a complex behaviour, and it is difficult
to identify disease specific patterns (Fig. 3.1). Implantable cardioverter defib-
rillators (ICD) are a safe and effective treatment of ventricular tachycardia or
fibrillation (VT). These fatal cardiac arrhythmias are the main factors trigger-
ing sudden cardiac death. A fundamental challenge in cardiology is detecting
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Figure 3.1: Recurrence plots of the heart beat interval (HBI) time series at a
control time (A) and before a VT (B) with m = 6 and ¢ = 170. The RP before
a life-threatening arrhythmia is characterized by big black rectangles whereas
the RP from the control series shows only small rectangles.

of early signs of VT in patients with an ICD based on HRV data (e.g. Diaz
et al., 2001). Recent studies have applied standard methods, methods based
on symbolic dynamics as well as finite time growth rates to the HRV parame-
ters of time and frequency domain (Diaz et al., 2001; Kurths et al., 1995; Voss
et al., 1996; Wessel et al., 2000). One of the first applications of RPs has been in
the study of heart beat intervals (Zbilut et al., 1991). The authors of this early
application have supposed that the RPs may be useful for the study of heart
rate variability in patients at risk for cardiac arrhythmia.

The defibrillators used in this study are able to store at least 1000 heart beat
intervals (HBISs) prior to the onset of VT (10 ms resolution), corresponding to
approximately 9-15 minutes. 24 ICD stored HBIs of 17 ICD patients at the
Franz-Volhard-Hospital with severe congestive heart failure are available. We
have studied their HBIs before the onset of VT episodes and at control intervals
without VT.

The RP before a life threatening arrhythmia is characterized by large black
rectangles, whereas the RP from the control series shows only small rectangles
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Table 3.1: Results of maximal diagonal and vertical line length shortly before
VT and at control time, nonparametric Mann-Whitney U-test, p — significance;
*—p < 0.05;* - p < 0.01; n.s. —not significant p > 0.05)

m I3 VT Control p
Maximal diagonal line length Lyax
3 77 396.64+253.8 261.5+156.6 n.s
6 110 447.6+269.1 285.5+160.4 *
9 150 504.6£2659 311.6£157.2 *
12 170 520.7+268.8 324.7+180.2 *
Maximal vertical line length Vi
3 77 261441935 169.2+1359 *
6 110 283.74190.4 179.5+134.1 **
9 150 3424+4193.6 216.14+137.1 **
12 170 353.5+221.4 215.14+138.6 **

(Fig. 3.1). All standard RQA measures described in Webber Jr. and Zbilut
(1994) as well as the new measures LAM, TT and V4, for different embedding
dimensions m and vicinity threshold radii ¢ are calculated for these data (fixed
¢ and Euclidean norm are used). By using a rank test (Mann-Whitney U-test),
significant differences between both groups of data for several of the measures
mentioned above can be found. However, the most significant measures for
rather large radii are Vy,5y and L,y (Tab. 3.1). The vertical line length V. is
more powerful in significantly discriminating between both groups than the
diagonal line length L.y, as can be recognized by the higher significance for
Vinax (p-values in Tab. 3.1).

The application of the newly introduced measures to heart rate variabil-
ity data has shown that they are able to detect and quantify laminar phases
before a life threatening cardiac arrhythmia and, thus, predict its occurrence
(cp. App. A, Marwan et al., 2002b; Wessel et al., 2001). These findings may be
of importance for the therapy of malignant cardiac arrhythmias.

3.1.2 Analysis of ERP Data

Neurons are known to be nonlinear devices because they become activated
when their somatic membrane potential crosses a certain threshold (Kandel
etal., 1995). This nonlinearity is one of the essentials in neural modelling as de-
scribed by the sigmoidal activation functions in neural networks (Amit, 1989).
The activity of large formations of neurons is macroscopically measurable in
the electroencephalogram (EEG) of the human scalp, which results from a spa-
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tial integration of postsynaptic potentials. However, it is debated whether the
EEG should be treated as a time series stemming from a linear or a nonlin-
ear dynamical system. Applying nonlinear techniques of data analysis to EEG
measurements has a long tradition. Most of these attempts involved estimat-
ing of the correlation dimension of spontaneous EEG (e.g. Babloyantz et al.,
1985; Rapp et al., 1986; Gallez and Babloyantz, 1991; Lutzenberger et al., 1992;
Pritchard and Duke, 1992). Theiler et al. (1992) have applied the technique
of surrogate data to correlation dimensions of EEG and reported that there is
no evidence of low dimensional chaos but of significance for nonlinearity in
the data. While correlation dimensions are only well defined for stationary
time series generated by a low dimensional dynamical system moving around
an attractor, these measures fail in investigating event related brain potentials
(ERPs) because they are nonstationary by definition (Sutton et al., 1965). Event
related potentials are characteristic changes in the EEG of a subject during and
short after a stimulus (surprising moment).

Traditionally, ERP waveforms are determined by computing an ensemble
average of a large collection of EEG trials that are stimulus time locked. This is
based on the following assumptions: (1) the presentation of stimuli of the same
kind is followed by the same sequence of processing steps, (2) these processing
steps always lead to activation of the same brain structures, (3) this activation
always elicits the same pattern of electrophysiological activity, which can be
measured at the scalp (Rosler, 1982) and (4) spontaneous activity is stationary
and ergodic.

By averaging the data points, which are time locked to the stimulus pre-
sentation (cf. Oddball experiment), it is possible to filter out some signal (ERP)
of the noise (spontaneous activity). This way, the P300 component of the ERP
was the first potential discovered to vary in dependence on subject internal
factors, like attention and expectation, instead on physical characteristics (Sut-
ton et al., 1965). The amplitude of the P300 component is highly sensitive to the
novelty of an event and its relevance (surprising moment), so this component
is assumed to reflect the updating of the environmental model of the informa-
tion processing system (context updating, Donchin, 1981; Donchin and Coles,
1988). The disadvantage of the averaging method is the high number of tri-
als needed to reduce the signal-to-noise-ratio. This disadvantage is crucial for
example in clinical studies, studies with children and studies in which repeat-
ing a task would influence the performance. Moreover, several high frequency
structures are filtered out by using the averaging method. It is, therefore, de-
sirable to find new ways of analyzing event related activity on a single trial
basis. Applying the concepts of the RQA to electrophysiological data could be
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Figure 3.2: Localization of the electrodes on the head.

Table 3.2: Notation of the electrodes and their numbering as it is used in the

figures.
# Electr. # Electr # Electrr # Electr. # Electr
F7 2 FC5 3 F3 4 FZ 5 F4
FCé6 7 F8 8 T7 9 CP5 10 C3

11 FCZ 12 C4 13 CPé6 14 T8 15 P7
16 PZ 17 P3 18 CZ 19 P4 20 P8

one way of dealing with this problem.

For this study, we analyze measurements of an Oddball experiment. The
Oddball experiment studies brain potentials during a stimulus presentation
(acoustic stimulii were used here). For the experimental description and set-
tings see (cp. App. B, Marwan and Meinke, 2004). In the analysis of a set of 40
trials of ERP data for an event frequency of 90% (ERP90) and a second set of
31 trials for an event frequency of 10% (ERP10), the RQA measures DET and
L, and the newly introduced measures LAM and TT are computed (Marwan
and Meinke, 2004). The ERPs were measured at 25 electrodes (Fig. 3.2 and
Tab. 3.2). The classical method of studying such ERP data is averaging them
over many trials. Our aim is to study the single trials in order to find transi-
tions in the brain processes during unexpected stimulation. Due to the N100
and the P300 components in the data, the RPs show varying structures chang-
ing in time (Fig. 3.3). Diagonal structures and clusters of black points occur.
The nonstationarity of the data around the N100 and P300 causes extended
white bands along these times in the RPs. However, the clustered black points
around 300 ms occur in almost all RPs of the ERP10 data set. The application
of the measures of complexity to these ERP data discriminates the single trials
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Figure 3.3: ERP data for event frequencies of 90% (A) and 10% (B), and their
corresponding recurrence plots. For the lower event frequency (B) more clus-
ter of recurrence points occur at 100ms and 300ms and a white band marks

some transition in the process.

with a distinct P300 component resulting from a low surprise moment (high
frequent events) in favour of such trials with a high surprise moment (less fre-
quent events). The LAM is the most distinct parameter in this analysis. In the
ERP data the LAM reveals transitions from less laminar states to more lami-
nar states after the occurrence of the event and a transition from more laminar
states to less laminar states after approximately 400 ms. These transitions oc-
cur around bounded brain areas (parietal to frontal along the central axis). The
comparable measures DET and LAM as well as L and TT are quite different
in their amplitudes. There are also differences in time and brain location of the

found transitions.

These results show that the measures based on vertical RP structures make
the identification of transitions possible, which are not found by the classical
RQA measures. These newly proposed measures indicate transitions in the
brain processes into laminar states due to the surprising moment of observed

events.
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Figure 3.4: RQA measures for selected trials for event frequencies of 90% (A-
D) and 10% (E-H). The P300 component reflects the surprising moment and
can be detected in single trials by the measures LAM (G) and TT (H), which
base on the vertical structures in the RP. The measures based on diagonal struc-

tures, DET and L, are less apparent.
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3.2 Similarities Found with Cross Recurrence Plots

Cross recurrence plots can be used to study a similar time evolution of phase
space trajectories and hence to assess the similarity or interrelation between
the underlying processes. The following examples illustrate the functioning of
this technique on prototypical model systems as well as on natural data.

3.2.1 Finding of Nonlinear Interrelations

This application shows the ability to find nonlinear interrelations between two
processes (cp. App. C, Marwan and Kurths, 2002), where linear tests are not
able to find them. We demonstrate this on a paradigmatic system from stochas-
tic processes and nonlinear dynamics. We consider linear correlated noise (au-
toregressive process) which is nonlinearly coupled with the x-component of
the Lorenz system x(t) which is solved with an ODE solver for the standard
parameters 0 = 10, r = 28, b = 8/3 and a time resolution of At = 0.01
(Lorenz, 1963; Argyris et al., 1994). We use an autoregressive process y; of first
order and force it with the squared x-component of the Lorenz system,

yi = 0.86y;_1 +0.500&; + k x7, (3.1)

where ¢ is Gaussian white noise and x,, (x(f) — x;, t = i At) is normalized to
standard deviation. The data length is 8 000 points. The coupling « is realized
without any lag.

As expected, due to the nonlinear linkage the cross correlation analysis of x
and y does not reveal a significant linear correlation between these data series
(Fig. 3.5 A). However, the mutual information shows a strong dependence be-
tween x and y at a delay of 0.05 (Fig. 3.5 B). The CRP based measures RR, and
L. exhibit maxima at a lag of about 0.05 for RR*/ L™ and RR; / L, and ad-
ditionally at 0.45 and —0.32 for RR; / L, (Fig. 3.5 C, D). The maxima around
0.05 for the + and — measures are a clear sign of the nonlinear linkage between
the data. The delay of approximately 0.05 stems from the autocorrelation of
y and approximately corresponds to its correlation time At/In0.86 = 0.066.
Since the result is rather independent of the sign of the second data before the
embedding, the found interrelation is of the kind of an even function. A sig-
nificance test for this method has not yet been developed. We use here 500
realizations of the AR model in order to receive the distributions of the mea-
sures. The 20 margins of these distributions can be used to assess the results.
Moreover, a surrogate test can be applied in order to estimate the significance
of the result. An example for such a surrogate test is presented in the next
application.
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Figure 3.5: (A) Crosscorrelation C(7), (B) mutual information I(7), (C) recur-
rence rate RR, and (D) average line length L. for the forced autoregressive
process and the forcing function; the curves represent the measures for one
realization as functions of the delay 7 for a coupling k = 0.2. In (C) and (D)
the solid lines show positive relation; the dashed lines show negative relation.
The gray bands mark the 20 margin of the distributions of the measures gained
from 500 realizations. The lag T and the average line length L, have units of
time.

Due to the rapid fluctuation of y the number of longer diagonal structures is
less. Therefore, measures based on these diagonal structures, especially DET,
do not work well with such heavily fluctuating data. However, we can infer
that the measures RR, as well as L, (though less significant for rapidly fluc-
tuating data) are suitable for finding the nonlinear relation between the con-
sidered data series x and y, where the linear analysis is not able to detect this
relation. Furthermore, this technique is applicable to rather short and nonsta-
tionary data, often appearing in geology. In the next subsection we will apply
this CRP method to palaeoclimatology data.

3.2.2 Investigation of ENSO in the Past

Data from geology are often characterized as short and nonstationary. The
unique character of outcrops or drilling cores does not usually allow to repeat
or refine a measurement. Therefore, data analysis of geological data is often
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confrontated with problems regarding the length, nonstationarity or gaps in
the data. In the previous application of CRPs we have seen that this method
can be used for this kind of data. Therefore, in this subsection the application
of CRPs will be used for the analysis of palaeoclimatology data that are of
short length and nonstationarity (cp. App. D, Marwan et al., 2003; Trauth et al.,
2003).

Higher variability in rainfall and river discharge could be of major impor-
tance in landslide generation in the northwestern Argentine Andes. A po-
tential cause of such variability is the El Nifio/ Southern Oscillation (ENSO).
Annual layered deposits of a landslide-dammed lake in the Santa Maria Basin
(site El Paso, Province Salta, NW Argentina) with an age of 30000 '*C years
provide an archive of precipitation variability during this time. The annual
cycle of wet summers and dry winters caused significant changes in the lake’s
sedimentation. During the rainy season mainly ocher coloured silty sediments
were deposited; during the subsequent dry season a thin white layer consist-
ing of the skeletons of silica algae (diatoms) was deposited. Due to its white
colour, the diatomaceous layer can be used to identify single years in these
sediments. Recurring intense red colouration of the silty part of the annual
layers comes from reworked older sediments which are eroded and deposited
only during extreme rainfall events. Therefore, the intensity of red colour in
the varved deposits can be interpreted as a proxy for precipitation variation in
the Santa Maria Basin (Trauth and Strecker, 1999; Trauth et al., 2000). The more
intense red colouration is evidence of more precipitation during the rainy sea-
son. The estimate of the power spectrum of the red colour intensity reveals
significant peaks within the ENSO frequency band of two to four years, sug-
gesting an ENSO-like influence (Trauth et al., 2000). Because of the nonstation-
arity of these data (the sedimentation process in a lake is not stationary, which
results in nonstationary proxy variables for the in-lake processes) linear cor-
relation analysis is unsuitable. Therefore, the CRP analysis is applied to these
data.

Our research includes the quantification analysis of CRPs of an index data
series of the ENSO (Southern Oscillation Index, SOI) and the modern as well
as palaeoprecipitation data in order to compare the magnitude and causes of
rainfall variability in the NW Argentine Andes today and during the time of
enhanced landsliding around 30 000 14c years ago (Marwan et al., 2003; Trauth
et al., 2003). For the assessment of the modern ENSO influence on local rainfall
in NW Argentina, the monthly precipitation data from the three stations San
Salvador de Jujuy (JUY), Salta (SAL) and San Miguel de Tucuman (TUC) are
analyzed. These locations are influenced by different local winds; Jujuy and
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Figure 3.6: RR¢ and L; measures of the cross recurrence plots between SOI and
precipitation in Tucuman (A, E), Salta (B, F), Jujuy (C, G) and palaeoprecipi-
tation (D, H). Extreme values reveal high similarity between the dynamics of
the rainfall and the ENSO. The dash-dotted lines are the empirical 2o-bounds
from the distributions of an ensemble of data based on a 5th-order AR-model.

Salta mainly receive northeasterly and easterly moisture-bearing winds during
the summer rainy season whereas Tucuman is characterized by southerly and
south-westerly winds (Prohaska, 1976). An appended surrogate test provides
an evaluation of the results of the CRP analysis.

We find that the parameter RRS of the CRPs between TUC and SOI has
small negative values which do not exceed the 20-bounds and do not show
preferences for a distinct lag. The parameter LS also has small values, but it
has rather small maxima and minima at delays of —1, 4 and 8 months. These
results indicate that the precipitation in Tucuman is not strongly influenced by
ENSO. If there is a weak influence, the rainfall will increase during El Nifio
(Fig. 3.6 A, E). However, the analysis of JUY and SOI reveals clear positive
values around a lag of zero and negative values after 8 — 12 months, which
suggests a significant link between Jujuy rainfall and ENSO ( Fig. 3.6 C, G). The
measures for the analysis of SAL versus SOI show smaller maxima for a delay
of about zero and minima after a lag of 8 — 12 months. Therefore, we infer
a weaker link between Salta rainfall and ENSO (Fig. 3.6 B, F; the disrupted
minima in the L parameter at around ten months is due to the short data
length and a resulting nonstationarity in the CRP). The measures for both SAL
and JUY exceed the 20-bounds.

The 30000 C year old precipitation data are not simply comparable with
present day data, because there is no information available about how to syn-
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chronize the rainfall records with modern climate indices. Therefore, we seek
the time window in these data showing the highest coincidence in the dynam-
ics using maximum values for RR{ and L as the key criterion. The linear
correlation coefficients could be used to find such a sequence, but this results
in numerous ambigous possibilities. The complexity measures based on CRP
provide a differentiated search that also considers time based features of the
signal. This method reveals indeed a clearer result. The measures presented
herein are not the only measures used. To maintain clarity, the further mea-
sures are not presented in this application, although they are used to find the
sequence in the sediment data. Although the observed coincidence is not very
high, it yields the time section in the palaeoprecipitation record EP160 which
can be in best accordance with modern data. In our palaeoclimate data EP160
we find such a section represented by maximum and minima values for RR¢
and LS for delays of about zero and ten months, similar to those found for JUY
and SAL (Fig. 3.6D, H). The RR¢ and L{ measures also exceed the 2o-bounds.

The similarities between the time series of the modern rainfall data and the
palaeoprecipitation record from the lake sediments suggest that an ENSO-like
oscillation was active around 30000 C years ago (roughly corresponding to
34000 cal. years BP), which corresponds with the results of the investigation of
Coccolithophores production (Beaufort et al., 2001). In the semiarid basins of
the NW Argentine Andes, the ENSO-like variation could have caused signifi-
cant fluctuations in local rainfall around 30000 *C years ago similar to mod-
ern conditions. Together with generally higher moisture levels as indicated by
lake balance modeling results (Bookhagen et al., 2001) this mechanism could
help explain more frequent landsliding approximately 34 000 years ago in the
semiarid basins of the Central Andes. For the comparison of the past and
modern climate conditions, the CRP analysis has been used because a linear
correlation analysis would reveal ambiguous results.

3.3 Time Scale Alignment Based on
Cross Recurrence Plots

The CRP contains information about the time synchronization of data series
(in the following the terms synchronization and rescaling refers to the align-
ment of the time scales). This is revealed by the distorted main diagonal, the
LOS. A nonparametric rescaling function is provided by isolating this LOS
from the CRP and can be used for the re-alignment of the time scales of the
considered time series. I expect that this approach will open a wide range of
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Figure 3.7: Cross recurrence plot (gray) based on six normalized sediment
measures and an additional embedding dimension of m = 3 (7 =1, ¢ = 0.05)
and line of synchronization (black line).

applications such as scale alighment and pattern recognition, for example in
geology, molecular biology and ecology.

3.3.1 Time Scale Alignment of Borehole Data

In this first application we consider geophysical measurements of two sedi-
ment cores from the Makarov Basin, in the central Arctic Ocean, PS 2178-3 and
PS 2180-2 (cp. App. E, Marwan et al., 2002a). The task is to align the data of
the PS 2178-3 core (data length N = 436) with the scale of the PS 2180-2 (data
length N = 251) in order to get a depth-depth-function which that to synchro-
nize both data sets.

The phase space trajectories are formed by the following normalized six
measures: low field magnetic susceptibility (xir), anhysteretic remanent mag-
netization (ARM), ratio of anhysteretic susceptibility to kir (Karm/Kir), rel-
ative palaeointensity (PJA), median destructive field of ARM (MDF4rpy) and
inclination (INC). Each measure is used as one component of the phase space
vector. However, this embedding can be combined with the time delay method
according to Takens (1981) in order to further increase the dimension of the
phase-space.

Using an embedding of m = 3 (absolute dimensionis 3 x 6 = 18), 7 =1
and a recurrence criterion of FAN with ¢ = 0.05, the resulting CRP shows a
clear LOS and some clustering of black patches (Fig. 3.7). Black patches arise
whenever the variation in the data is smaller than the used vicinity threshold ¢
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Figure 3.8: The ARM data are exemplary shown after alignment by wiggle
matching (A) and by automatic alignment (B) using the LOS from Fig. 3.7.
Plot (C) shows the reference data.

for a given time (plateau). The next step is to fit a nonparametric function (the
desired depth-depth-curve) to the LOS in this CRP (black curve in Fig. 3.7).
Different approaches can be considered for this procedure. However, they
could have to be chosen appropriately because they have a large effect on the
quality of the found LOS. In our example a two step algorithm is chosen that
is able to tend locally towards the direction of the centre of gravity of clustered
black points. A full explanation is given in Marwan et al. (2002a). With so
determined LOS we are able to align the scale of the PS 2178-3 core to that of
PS 2180-2 (Fig. 3.8).

The comparison of the CRP aligned geophysical measurements with the
conventional visual matching (wiggle matching) shows an acceptable relia-
bility level of the new method (Marwan et al., 2002a). The advantage is the
automatic, objective and multivariate alignhment. Moreover, further attempts
exist to align geological data automatically. They either use parametrical ap-
proaches (minimal cost functions, Fourier series estimation of the mapping
function and others; Martinson et al., 1982; Briiggemann, 1992) or they have
to fit a large number of parameters and apply trial-and-error algorithms (se-
quence slotting; Thompson and Clark, 1989).
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3.3.2 Search for an Appropriate Sequence in Reference Data

In the following three applications of CRPs the possibility of finding an appro-
priate sequence in a given data series relating to a reference series (and vice
versa, respectively) is presented. For this task the LOS in the CRP must be
found.

Dating of a Geological Profile (Magnetostratigraphy)

From a sediment profile (Olguita profile, Patagonia, Argentina; Warkus, 2002)
a measurement of the palaeopolarity of the Earth’s magnetic field (along with
other measurements) is available. The starting point for any geological investi-
gation of such a profile is determining the time at which these sediments were
deposited. By applying the magnetostratigraphic approach and a geomagnetic
polarity reference with known time scale, the polarity measurements can be
used to determine a possible time scale for the profile. Cande and Kent (1995)
provide such a geomagnetic polarity reference, which covers the last 83 Myr.
The Olguita profile contains seven reversals. The polarity data consist of the
values one, for the polarity direction as today, and the values zero, for the
inverse polarity. Unfortunately, this data series is too short (only 16 measure-
ments) for a credible analysis. Nevertheless, for our purpose of demonstration
we will enlarge this data by interpolation. The Olguita profile is transformed
to an equidistant scale of 300 data points and the reference data is transformed
to an equidistant scale of 1200 data points.

A CRP is created from these two data series by using an embedding di-
mension m = 4, a delay of T = 6 and a neighbourhood criterion of FAN (30%
recurrence rate). Varying degrees of continuous lines between 21 and 16 Myr
BP and between 12 and 8 Myr BP occur in the CRP, which can be interpreted
as the desired LOS (Fig. 3.9). We will analyse six of these possibilities for the
LOS. The search for the potential LOS is conducted using the same algorithm
described in Marwan et al. (2002a). Moreover, we can evaluate the quality of
these potential LOS by introducing a quality factor that takes into considera-
tion the amount of gaps N, and black dots N, on this line

N.
2 100%. 2
N.+ N, 007 62

Q=
A larger Q is a better LOS; Q = 100% stands for an absolute continuous
line. Moreover, the obtained LOS can be interpreted as the sedimentation rate
(Fig. 3.10). Abrupt changes in the sedimentation rate are not expected, thus,
the potential LOS should not change abruptly. As an evaluator for this crite-

rion we can use the averaged second derivative with respect to the time (07).
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Figure 3.9: CRP between the polarity data of the Olguita profile and the refer-
ence data according to Cande and Kent (1995). In the polarity data the white
colour marks a polarity of the Earth’s magnetic field in the present, whereas
the black colour marks a reversal. Six potential LOS are marked with gray
lines (A-F, corresponding to the potential LOS given in Fig. 3.10).
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Figure 3.10: Potential LOS of the CRP presented in Fig. 3.9. They correspond
to the potential sedimentation rates of the Olguita profile and mark sequences

in the polarity reference, which match with the Olguita profile. Due to this

matching, the Olguita profile can be dated.

63



Table 3.3: Possible ages of the Olguita profile, which are based on the found
potential LOS (Fig. 3.10) and characteristics of these potential LOS.

Plot Age(Myr) N. No Q (%) (8%)
A 19.4-21.4 345 23 93.8 55
16.7-20.3 407 43 904 125
16.5-189 351 15 959 5.0
14.4-17.8 392 16 96.1 20
8.1-12.6 482 16 96.8 23
79-11.1 399 13 96.8 18

mHm O 0N w

The potential LOS differs slightly in the Q factor, but more in the occurrence
of abrupt changes in their slope (Fig. 3.10 and Tab. 3.3). The LOS in Fig. 3.10C
has the smallest <6t2> and could be, therefore, a good LOS for the dating of the
Olguita profile. Regarding this result, the Olguita profile would have an age
between 16.5 and 18.9 Myr and an age-depth-relation as it is represented by
the possibility of a LOS in Fig. 3.10C. Warkus’ investigation reveals the same
result (Warkus, 2002), although he also mentioned that the dating based on the
polarity data is ambiguous.

I must mention that the stated results are only possible sequences and do
not lay claim to absolute correctness. It is rather a question of showing the po-
tentials of CRPs. In general, for such geological tasks as presented in the two
previous applications, the distance matrix (Eq. (2.11)) may be more appropri-
ate. Future development would have to to improve the search algorithm for
the LOS and to define an appropriate quality factor for the found LOS.

Looking for a Known Gene in a DNA String

Physiological processes are based on the interpretation of specific information
stored in the DNA molecules by a definite sequence of the nitrogenous bases
adenine (A), thymine (T), cytosine (C) and guanine (G). This information code
is called a gene. Three consecutive bases are needed for the coding of one
amino acid. A specific sequence of amino acids form a protein. The protein
coding sequences of the gene are denoted as exons.

The human genome is estimated to contain more than 100 000 genes of vari-
ous length (3 000 base pairs on average) and three billion base pairs. The genes
are distributed over various DNA molecules which form the chromosomes. A
DNA molecule does not consist solely of genes. Only around 10% of the hu-

man genome consists of genes. Moreover, the genes are usually not contin-
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Figure 3.11: A detail of the CRP between the human U44839 gene and a se-
quence from the X chromosome. The LOS marks the exons and the jumps in
the LOS mark the introns.

uous. They are interrupted by sequences that (probably) contain no informa-
tion. These sequences are called introns. Whereas a specific gene is the same for
all humans, the introns which fragment this gene differ greatly. These introns
as well as the huge length of the DNA sequences (the largest DNA sequence
known has more than 350 thousand base pairs) make the search for a specific
gene in a given DNA sequence rather difficult if not impossible. However,
gene sequencing is the fundamental method for discovering genes (Myers,
1991; Giegerich and Wheeler, 1996). A CRP provides an easy although com-
puting intensive method for finding a specific gene, given e. g. by a database,
in an experimental DNA string (similar algorithms can be found in literature,
e.g. Vihinen, 1988). The application of RPs to DNA sequences is not new. For
example, the RQA was applied to DNA sequences in order to study long-range
correlations in introns and intergenic regions (Frontali and Pizzi, 1999) and to
protein sequences in order to classify and compare special proteins (Giuliani
et al., 2000).

We will try to locate the gene U44839 (ubiquitin C-terminal hydrolase gene)
in a DNA sequence from the human X chromosome (genome data from the
Human Genome Browser, 2001, http://genome.cse.ucsc.edu). The gene
U44839 has a length of 3167, and the used subsequence of the X chromosome
has a length of 16363. Since the gene data are alpha coded, we have to sub-
stitute numbers for the letters (e.g. A — 0,C — 1, G — 2, T — 3). Taking
into account that a triplet of consecutive bases codes an amino acid, we use an
embedding dimension of three and an embedding delay of one. In the CRP
a shifted and interrupted LOS marks the location of the U44839 gene in the X

65



chromosome sequence (Fig. 3.11). Each jump in the LOS marks the occurrence
of an intron in the DNA sequence.

Since DNA sequences are rather long, the visual inspection of CRPs is not
applicable. The computation and visualization of measures based on the diag-
onal lines within sub-CRPs can reduce the amount of nonsignificant informa-
tion. This procedure will be used in the next application. High values of, for
example, L. mean good matching. The position of the sub-CRP with a high
Lynayx is associated with the location of the gene in the DNA sequence.

Speech Recognition

This last application completes the illustrations of the potentials of the CRP
analysis. We consider a typical problem of speech analysis, the recognition of
some spoken sentences with already present reference data. This reference
data can be single sounds or words. A large amount of studies regarding
speech recognition exist already (cf. Aubert, 2002; Huckvale and Fang, 2002).
Therefore, we will not claim that our method is the ultimate solution. There
may be better and faster methods for this task.

We analyze a german sentence which is given in the form of wave-form
data of 22.05 kHz and 41251 data points (Fig. 3.12A). The task is to find a se-
lected word in this sentence. This word is provided as a reference vocabular
from another audio record (Fig. 3.12B, 22.05 kHz, 11000 data points, spoken
by the same person). With the reference vocabular and the test sentence, we
create a CRP of the both data series by using an overembedding with m = 20
and T = 5 (according to Matassini et al. (2002) this overembedding is used to
reduce noise as much as possible; overembedding is suitable here for our task
of sequence matching). Wave-form audio data have a distinct periodic nature
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Figure 3.12: Wave data of a german sentence used for this study (A) and a
reference pattern (B).
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Figure 3.13: (A) Variation Ly, of the length of the diagonal lines in the CRP
of the sentence and the reference vocabular presented in Fig. 3.12. In (B) only
the variations with L, > 9 ms are presented, which reveal the location of the
reference vocabular in the test sentence. Similar to CRPs, large, more or less
diagonal structures correspond to high concordance between the considered
sequences. The bowed diagonal oriented structure is caused by varying speech
tempo.

leading to periodic and pronounced diagonal lines in its RP or CRP. The used
high embedding provides a large amount of rather long, more or less diagonal
lines. Since speech data contain a large amount of data points, it is impossible
to inspect visually such a huge RP or CRP. The CRP of the data used here has
the size of 41239 x 10988. Therefore, we divide the CRP into several, over-
lapping sub-CRPs of the size 400 x 400 (shifted by 100 steps) and compute
the RQA measures for these sub-matrices. These measures can be presented
in a time-time plot analogously to the representation of the CRP. The high co-
incidence of periodic data corresponds with long diagonal lines. Therefore
we focus on that RQA measure that measures the maximal line length, L;ax.
This measure exhibits the highest values for the time between 0.2 and 1.1 s
in the sentence Fig. 3.13, which corresponds to the searched word in the sen-
tence. Analogous the LOS in a CRP, high coincidence causes line-like struc-
tures, which can be diagonal or bowed. The phonemes in the test sentence and
in the reference word have been spoken in a different tempo, which causes a
distortion of the line-like structures in the plot at about 1s. Single phonemes,
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like “A”, can also be recognized by L,y at different locations in the word.

Moreover, regions with low values of L, attract the attention. On the one
hand, these regions mark the occurrence of short breaks (e.g. “glottis stop”)
and on the other hand, they mark specific phonemes. These are phonemes
which are made in an alveolar! and fricative manner, like “s”, “c” or “z” (ger-
man pronounciation) and cause distortions in the oscillations. This can be seen
with a recurrence quantification analysis, especially when we focus on an anal-
ysis of the distribution of the length of the diagonal lines. The variation of the
line lengths Ly, as well as the entropy ENTR reveal significantly the locations
of these phonemes (Fig. 3.14). Adopting the RQA to the specific manner of
speech production, this analysis may help to refer the phonemes of a spoken
sentence to a specific class and therefore to simplify appropriate search algo-
rithms for speech recognition.
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Figure 3.14: RQA measures L (B), Lyzx (C) and ENTR (D) for two versions of
a german sentence and the first three letters of the alphabet. These measures
reveal the phonemes made in an alveolar and fricative manner. Embedding
was m = 3, T = 6 and ¢ = 0.05 (FAN).

! Articulated with the tip or blade of the tongue against the ridge behind the upper teeth
(Source: http:/fwww.xrefer.com).
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Chapter 4

Conclusion

In this study I have shown that recurrence plots (RPs) offer manifold possi-
bilities of application. RP based techniques can be modified and adopted to a
specific problem.

In this work different aspects of the application of RPs to time series have
been studied. Methodical extensions have been introduced for the univariate
and bivariate data analysis. Applications to model and real data have revealed
the applicability of these methodical extensions, especially where other meth-
ods fail, and have given new insights into the processes behind the consid-
ered data. Besides, a comprehensive overview of earlier introduced techniques
based on RPs is given.

4.1 Methodical Development

4.1.1 New Quantification Measures for Recurrence Plots

Recurrence plots (RPs) are binary plots which consist of black dots and black
diagonal as well as vertical lines. Classical measures of complexity based on
RPs use mainly the diagonal structures within an RP. These measures allow to
identify transitions between chaos and order. We have introduced new mea-
sures of complexity that also use the vertical structures in an RP, the laminarity,
the trapping time and the maximal vertical line length.

A vertical line structure occurs when a state does not change or changes
rather slowly. It seems that the state is trapped for some time, which is typ-
ical for laminar behaviour. The laminarity measures the occurrence of such
laminar states. The time length of the laminar states is measured by the other
two measures where the trapping time is defined as the average duration of a
laminar state. These new measures of complexity enable also identification of
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chaos-chaos transitions.
We have also shown the relations of these new measures to formerly intro-
duced quantification techniques.

4.1.2 Extension to Cross Recurrence Plots

The extension of the concept of recurrence plots to test for interrelations be-
tween two different phase space trajectories leads to cross recurrence plots
(CRPs). From the point of view of a CRP, an RP can be considered as a spe-
cial case of a CRP for two identical processes. However, if these two processes
become progressively different, typical structures of the RP, like the main di-
agonal (line of identity, LOI), will dissolve. A quantification of these structures
can be used in order to assess the variation or similarity between the dynamics
of both processes.

The CRP analysis provides another useful application. The orientation of
the line structures in the CRP is related to the time relation between the cor-
responding segments of the phase space trajectories. In the case of two suf-
ficiently similar processes with different time dilatations, the CRP shows a
bowed line of identity which is called line of synchronization (LOS). This line
corresponds to the transfer function between the time scales of the considered
time series. A nonparametrical function fitted to LOS can be used in order to
align the two processes to the same time scale.

Considering two processes, where epochs of the second are partly con-
tained in the first, the CRP facilitates finding the location of these epochs in
the first process.

4.2 Applications

The applications presented here are from different scientific disciplines and in-
clude various types of problems. Using RP based techniques, we have achieved
important results, whereas other methods were mostly not sufficient.

4.2.1 Heart Rate Variability Data

The application of the new introduced measures of complexity to heart rate
variability data of patients with fatal cardiac arrhythmias has revealed charac-
teristic patterns in the RPs before the onset of a ventricular tachycardia (VT).
The new measures of complexity allow to detect early signs of occurrence of a
life threatening cardiac arrhythmia. These result may be of importance for the
therapy of malignant cardiac arrhythmias.
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4.2.2 EEG Data During Stimulus Presentation

In the analysis of data of cognitive experiments (event related EEG data, Odd-
ball experiment) we have found components in the brain potential which are
typical for attention and expectation already from a single trial analysis. This
is an important progress because traditionally such components can only be
found after averaging an ensemble over a collection of EEG trials. This study
suggests further chaos-chaos transitions between laminar and non-laminar
states during event induced processes in the brain.

4.2.3 ENSO-like Influence on Pleistocene Precipitation

CRPs have been used for the search for an influence of the El Nifio/ Southern
Oscillation (ENSO) on the climate in northwestern Argentina 34 000 years ago.
The CRP analysis of the colour variation of lake sediments as a proxy for the
palaeorainfall has uncovered similarities to the modern precipitation which
is influenced by the ENSO. From this result we can infer that an ENSO-like
oscillation was active at approximately 34 000 years ago.

4.2.4 Time Scale Alignment of Marine Geophysical Data

The characteristic shape of the LOS has been used for the time scale alignment
of geophysical borehole data from the central Arctic Ocean. The transfer func-
tion has been found by its non-parametrical fit to the LOS. The comparison
with the standard method of wiggle matching has shown the reliability of the
alignment based on CRPs.

4.2.5 Examples for the Search of Matching Sequences

Sequences of high concordance can be found with the help of CRPs. In a ge-
ological frame we have presented this technique in order to date a geological
profile with a reference whose time scale is known.

In a second example the CRP has been applied to a DNA sequence and a
known gene. The CRP has found and visualized the locations of the gene in
the DNA string. Diagonal lines and jumps therein have marked the occurrence
of exons and introns.

The last example has shown the applicability of CRPs to speech recogni-
tion. We could recognize a single word within a spoken sentence by compar-
ing it with a reference vocabular. Using the RQA, specific phonemes can be
classified regarding to their manner and location of production.
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4.3 Perspectives

Since recurrence plots offer various possibilities of application and become
more popular, numerous applications to different kind of data can be expected.

However, the theoretical background of RPs is not yet completely under-
stood. Promising studies are still under work by Thiel et al. (2003a) and Ro-
mano et al. (2003). For example, they evolve a new approach to cross recur-
rence. The development of a basic theory about the statistics of the quantifica-
tion measures based on RPs needs further research. This statistics have to con-
sider the embedding as well as the non-normal distribution of the measures
and is required to assess the significance of the measures. Since the measures
of complexity based on RPs depend on the embedding as well as the construc-
tion parameters, future work should further focus on possible pitfalls.

Regarding the theory of RPs, there is a further demand for research of the
perpendicular RPs and the RPs created with the criteria of a fixed amount of
nearest neighbours. The recurrence points in a perpendicular RP are closely
related to Poincaré sections and may be useful for the definition of further
invariant measures based on RPs.

There is still an open question in the context of the distribution of the
lengths of vertical structures in an RP. The lengths of these vertical structures
and thus their corresponding measures depend on the choice of the embed-
ding parameters. Especially if the product of the dimension and delay exceeds
the averaged length of vertical structures, these measures decrease abruptly
but do not vanish. After further increase of the embedding, these measures
may increase again. However, this relation is not yet studied in detail.

Future development considering optimization of the LOS searching algo-
rithm and definition of an improved quality factor of the found LOS is needed
in order to get a clear LOS even if the data are non-smooth. Moreover, the
influence of dynamical noise to the result needs a further study. Probably, this
problem may be bypassed by a suitable LOS searching algorithm too.

A forthcoming study will try to adopt the concepts of RPs to applications
of image processing. Moreover, the applicability to the analysis of spatio-
temporal data is an important task.

The independent component analysis may offer a further method for the
phase space reconstruction. The development of such embedding method

seems promising.
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Appendix A

Recurrence Plot Based Measures of Complexity and their
Application to Heart Rate Variability Data
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The knowledge of transitions between regular, laminar or chaotic behaviors is essential to understand the
underlying mechanisms behind complex systems. While several linear approaches are often insufficient to
describe such processes, there are several nonlinear methods that, however, require rather long time observa-
tions. To overcome these difficulties, we propose measures of complexity based on vertical structures in
recurrence plots and apply them to the logistic map as well as to heart-rate-variability data. For the logistic map
these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify
laminar states, i.e., chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the
latter transitions. Applying our measures to the heart-rate-variability data, we are able to detect and quantify the
laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an
event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.

DOI: 10.1103/PhysReVvE.66.026702 PACS nuni)er07.05.Kf, 05.45.Tp, 87.80.Tq, 87.19.Hh

I. INTRODUCTION rence plots, which allow us to identify laminar states and
their transitions to regular as well as other chaotic regimes in
Numerous scientific disciplines, such as astrophysics, bicomplex systems. These measures make the investigation of
ology or geosciences, use data analysis techniques to get #rermittency of processes possible, even if they are only
insight into the complex processes observed in ndtlw&],  represented by short and nonstationary data series.
which show generally a nonstationary and complex behavior. The paper is organized as follows. After a short review of
As these complex systems are characterized by differerihe technique of recurrence plots and some measures, we
transitions between regular, laminar, and chaotic behaviorgptroduce other measures of complexity based on recurrence
the knowledge of these transitions is necessary for undeplots. After that we apply this approach to the logistic equa-
standing the process. However, observational data of thed®n and demonstrate the ability to detect chaos-chaos tran-
systems are typically rather short. Linear approaches of timgitions. Finally, we apply this technique to heart-rate-
series analysis are often not suffici¢at5] and most of the Vvariability data[26]. We demonstrate that by applying our
nonlinear technique&f. [6,7]), such as fractal dimensions or proposed methods we are able to detect laminar phases be-
Lyapunov exponent’—10], suffer from the curse of dimen- fore the onset of a life-threatening cardiac arrhythmia.
sionality and require rather long data series. The uncritical
application of these methods, especially to natural data, caj RECURRENCE PLOTS AND THEIR QUANTIFICATION

therefore be very dangerous and it often leads to serious o o
pitfalls. The method of RP was first introduced to visualize the

To overcome these difficulties other measures of comiime dependent behavior of the dynamics of systems, which
plexity have been proposed, such as the Renyi entropies, tlean be pictured as a trajectoxye R" (i=1, ... N) in the
effective measure complexity, tkecomplexity or the renor- n-dimensional phase spaf21]. It represents the recurrence
malized entropy11,12. They are mostly based on symbolic of the phase space trajectory to a certain state, which is a
dynamics and are efficient quantities for characterizing meafundamental property of deterministic dynamical systems
surements of natural systems, such as in cardiol@g8y-19, [27,28. The main step of this visualization is the calculation
cognitive psychologyf16] or astrophysic§17-19. In this  of the NX N matrix,
paper we focus on another type of measure of complexity,
which is based on the method of recurrence pI&R®’s). Ri‘j:=®(8i—||>2i—>2j||), i,j=1,... N, (1)
This approach has been introduced for the analysis of non-
stationary and rather short data sefi26—23. Moreover, a  whereg; is a cutoff distance|-|| is a norm(e.g., the Euclid-
quantitative analysis of recurrence plots has been proposeghn norn), and ©(x) is the Heaviside function. The phase
to detect typ|Ca.| tl’ansition@.g., bifurcation pOinl)SOCCUI‘- space vectors for one-dimensional time Serjﬁﬁ'om obser-

ring in complex system$23-25. However, the quantities yations can be reconstructed by using the Taken's time delay
introduced so far are not able to detect more complex tranﬁwethodii=(ui Uiers - Uie@m-1y2) [7]. The dimensiom

sm(_)ns,_ espec_lally chaos-phaos transitions, Wh'Ch are aIS(?an be estimated with the method of false nearest neighbors
typical in nonlinear dynamical systems. Therefore in this pa'(theoreticallym=2n+1) [7,27). The cutoff distance:; de-
per we introduce measures of complexity based on recur- ' S o !

fines a sphere centeredat If x; falls within this sphere, the
state will be close t&i and thusR; j=1. Thesee; can be

*Electronic address: marwan@agnld.uni-potsdam.de either constant for alk; [22] or they can vary in such a way
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that the sphere contains a predefined number of close stataad call itlaminarity A. The computation ol is realized for
[21]. In this paper a fixedt; and the Euclidean norm are v that exceeds a minimal length,;,. For maps we use
used, resulting in a symmetric RP. The binary valueRin  vy,i,=2. A is the measure of the amount of vertical struc-
can be simply visualized by a matrix plot with the colors tures in the whole RP and represents the occurrence of lami-
black (1) and white(0). nar states in the system, without, however, describing the

The recurrence plot exhibits characteristic large-scale anténgth of these laminar phases. It will decrease if the RP
small-scale patterns that are caused by typical dynamical b&onsists of more single recurrence points than vertical struc-
havior[21,24), e.g., diagonal¢similar local evolution of dif-  tures,

ferent parts of the trajectoryr horizontal and vertical black N

lines (state does not change for some tjme
Zbilut and Webber have recently developed the recurrence v;;« v P(v)
quantification analysi§RQA) to quantify an RP[23-23. Ti=———, 3
They define measures using the recurrence point density and E P(1)
the diagonal structures in the recurrence plot,rfdwirrence v=omin

rate, the determinismthe maximal length of diagonal struc-

tures the entropy and thetrend A computation of these and call it asrapping time T The computation also uses the

measures in small windows moving along the main diagonaminimal lengthv i, as inA. The measur@ contains infor-

of the RP yields the time dependent behavior of these varimation about the amount and the length of the vertical struc-

ables and, thus, makes the identification of transitions in théures in the RP.

time series possiblE23]. Finally, we use the maximal length of the vertical struc-
The RQA measures are mostly based on the distributiotures in the RP,

of the length of the diagonal structures in the RP. Additional

information about further geometrical structures such as ver- Vimax=max{v,; 1=1,2,...L}), 4

tical and horizontal elements are not included. Gao has there- .

fore recently introduced a recurrence time statistics that cor®S @ measure that is the analogue to the standard RQA mea-

responds to vertical structures in an R29,30. In the SU€Lmax[24]. _ _

following, we extend this view on the vertical structures and Although the distribution of the diagonal line lengths also

define measures of complexity based on the distribution ofontains information about the vertical line lengths, the two

the vertical line length. Since we are using symmetric rpdlistributions are significan.tly different. In order to compare
here, we will only consider the vertical structures. the measures proposed with the standard RQA measures, we

apply them to the logistic map.

IIl. MEASURES OF COMPLEXITY
IV. APPLICATION TO THE LOGISTIC MAP

We consider a poin; of the trajectory and th? set In order to investigate the potentials &f, T, andV a4,

of its associated recurrence point§:={x,:Ri =1 e first analyze the logistic map

ke[l,...N—1]}. Denote a subset of these re-

currence points s;:={x €S :(Ri ;-Ri +1) + (Ri;-Ri _1) Xn+1= aX(1=Xp), ()

>0; le[1, ... N], R 0=Rjn+1:=0}, which contains the ) . )

recurrence points forming the vertical structures in the RP agSPecially the interesting range of the control paramater
columni. In continuous time systems with high time resolu- €[3-5,4] with a step width otAa=0.0005. Starting with the
tion and with a not too small threshoid a large part of this idea of Trullaet al.[23] to look for vertical structures, we are
sets; usually corresponds to the sojourn points described igSPecially interested in finding the laminar states in chaos-
Refs.[29,30. Although sojourn points do not occur in maps, €haos transitions. Therefore we generate for each control pa-

the subses; is not necessarily empty. Next, we determine thef@metera a separate time series. In the analyzed range of
length v of all connected subset& &S x " e[3.5,4] various regimes and transitions between them oc-
j [IREAY R N I T S ]

= i _ cur, e.g., accumulation points, periodic, and chaotic states,
€S 1 Xj+y+1¢S) NS Pi(v)={v); 1=12,... L} denotes pang merging points, period doublings, and inner and outer
the set of all occurring subset lengths 8 and from crises[27,32,33.

UL, P;i(v) we determine the distribution of the vertical line A yseful tool for studying the chaotic behavior is the re-

lengthsP(v) in the entire RP. cursively formedsupertrack functions
Analogous to the definition of the determinidia4,31],

we compute the ratio between the recurrence points forming 1
the vertical structures and the entire set of recurrence points, si-i(@)=as(a)ll-si(a]. sfa)=73, (6)
EN: p which represent the functional dependence of stable states
RE () [33]. The intersection ofs(a) with s;,j(a) indicates the
Ni=—yg—, (2)  occurrence of a-period cycle and the intersection sf(a)
with the fixed point (1 1/a) of Eq. (5) indicates the point of
> vP(v) , - : : .
v=1 an unstable singularity, i.e., laminar behavigig. 1, inter-
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Logistic map small variations(e.g., the range before the accumulation
IS —— s point consists of small variationsHowever, the recurrence
point density decreases in the same way and thus the statis-
tics of continuous structures in the RP soon becomes insuf-
ficient. Larger values cause a higher recurrence point density,
but a lower sensitivity to small variations.

A. Recurrence plots of the logistic map

For various values of the control parametewe obtain

0 R L ~ RPs that already exhibit specific featur@sg. 2). Periodic
35 355 36 365 37 375 38 38 39 39 4

Control parameter a states (e.g., in the periodic window of length 3 a
=3.830) cause continuous and periodic diagonal lines in the
Supertrack functions RP of width of 1. There are no vertical or horizontal lines
! i~ [Fig. 2(@)]. Band merging points and other cross points of

supertrack functionde.g., a=3.720, Fig. 2c)] represent

Yo ! : states with short laminar behavior and cause vertically and
0.6 : . ‘ horizontally spread black areas in the RP. The band merging
x . BN WA ' ata=3.679 causes frequent laminar states and therefore a lot
0.4k SN L : of vertically and horizontally spread black areas in the RP

AN & : ; [Fig. 2(b)]. Fully developed chaotic statea$4) cause a
o0zt Tl rather homogeneous RP with numerous single points and
: Pl : f rare short diagonal or vertical ling¢sig. 2(d)].
%. 5 3.I55 3i 6 3. I65 3i 7 3 l75 31 8 3.I85 31 9 3 I95 4
Control parameter a B. Complexity measures of the logistic map
FIG. 1. () Bifurcation diagram of the logistic magb) Low Now we compute the known RQA measurs L .y,

ordered supertrack functions(a)(i=1,...,10) and the fixed and in addition(L) (average length of diagonal lineand
point of the logistic map %+ 1/a (dashedl Their intersections rep- our measures\, V., and T for the entire RP of each
resent periodic windows, band merging, and laminar states. Theontrol parametea. As expected, the known RQA measures
vertical dotted lines show a choosing of points of band merging and | Lmax. and(L) clearly detect the transitions from chaotic
laminar behavi0r4=3.678, 3.727, 3.752, 3.791, 3.877, 3927 to periodic sequences and vice Vef@s_ aa), 3(0), and
3(e)] [23]. However, it seems that one cannot get more in-
section points are marked with dotted lineBor eacha we  formation than the periodic-chaotic/ chaotic-periodic transi-
compute a time series of the lenghth=2000. In order to tions. Near the supertrack crossing poiritind merging
exclude transient responses we use the last 1000 values pdints includegl e.g.,a=3.678, 3.791, 3.927, there are no
these data series in the following analysis. significant indications in these RQA measures. They clearly
We compute the RP after embedding the time series witlidentify the bifurcation points(periodic-chaotic/chaotic-
a dimension ofin=1, a delay ofr=1, and a cutoff distance periodic transitions without, however, finding the chaos-
of £=0.1 (in units of the standard deviatiom). Since the chaos transitions and the laminar states.
considered example is a one-dimensional nmg,1 is suf- Calculating the vertical based measuresand T, we are
ficient. In general, a too small embedding leads to false reable to find the periodic-chaotic/ chaotic-periodic transitions
currences, that are expressed in numerous vertical structurasd the laminar statd§igs. 3b) and 3f)]. The occurrence
and diagonals from the upper left corner to the lower rightof vertical lines starts shortly before the band merging from
corner[30]. In contrast, an overembedding should theoreti-two to one band aa=3.67 . .. .
cally not distort the reconstructed phase trajectory. Whereas For smallera values the consecutive points jump between
false recurrences and overembedding do not strongly influthe two bands and it is therefore impossible to obtain a lami-
ence the measures based on diagonal strucfid@s the nar behavior. A longer persistence of states is not possible
measures based on vertical structures are, in general, muaitil all bands are merged. However, due to the finite range
more sensitive to the embedding. This is due to the fact thawf neighborhood searching in the phase space, vertical lines
the embedding method causes higher-order correlations ioccur before this point.
the phase-space trajectory, which will be of course visible in  Vertical lines occur much more frequently at supertrack
the RP. A theoretical and more detailed explanation of thisrossing pointgband merging points includedhan in other
effect within the analysis of RPs is in preparation and beyonahaotic regimes, which is revealed Ay[cf. Fig. 3b), again,
the scope of this paper. For the logistic map, however, asupertrack crossing points are marked with dotted links
increasing ofm slightly amplifies the peaks of the vertical in the states before the merging from two to one band, ver-
based complexity measurégp to m=3), but it does not tical lines are not found within periodic windows, e.@.,
change the result significantly. The cutoff distarcés se- =3.848. The mean of the distribution ofis the introduced
lected to be 10% of the diameter of the reconstructed phasmeasureT [Fig. 3(f)]. It will vanish if a is smaller than the
space. Smaller values would lead to a better distinction opoint of merging from two to one band.increases at those
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FIG. 2. Recurrence plot&RkPs of the logistic map for various control parametarqiear different qualitative changes: 3-period window
a=3.830 (a); band merginga=3.679 (b); supertrack intersectioa=3.720 (c); and chaos(exterior crisi$ a=4 (d), with embedding
dimensionm=1, time delayr=1, and distance cuto#=0.1o.
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FIG. 3. Selected RQA parameteXs L.y, and({L) and the measures, V.., andT. The vertical dotted lines show some of the points
of band merging and laminar behavi@f. Fig. 1), whereby not all of them have been marked. Whereds), L ., (c), and{L) (e) show
periodic-chaotic/ chaotic-periodic transitioraaxima, A (b), V.« (d), andT (f) exhibit in addition to those transitioriminima) chaotic-
chaotic transitiongmaxima. The differences betweek andV,,,, are caused by the fact thAtmeasures only the amount of laminar states,
whereasV,,x measures the maximal duration of the laminar states. Although some pedks 0dndT are not at the dotted lines, they
correspond to laminar statésot all can be marked

points where more low ordered supertrack functions aresigns of ventricular tachyarrhythmid¥T) in patients with
crossing[Fig. 3(f)]. This corresponds to the occurrence of an implanted cardioverter-defibrillat¢fCD) based on HRV
laminar states. Althougl .« also reveals laminar states, it data[26,35—37. Therefore standard HRV parameters from
is quite different from the other two measures, because itime and frequency domairi88], parameters from symbolic
gives the maximum of all of the durations of the laminar dynamics 13,14 as well as the finite-time growth ratg39]
states. However, periodic states are also associated with vajjere applied to the data of a clinical pilot stuf6]. Using
ishing T and Vp,,a. Hence, the vertical length based mea-two nonlinear approaches, we have recently found significant
sures yield periodic-chaotic/chaotic-periodic as well asgjfferences between control and VT time series based mainly
chaos-chaos transitioriaminar stateps on laminar phases in the data before a VT. Therefore the aim

We have also computed, Viax, andT for the logistic ¢ tis investigation is to test whether our RP approach is
map with transients using the same approach as described Witable to identify and quantify these laminar phases.
[23]. The qualitative statement of the measures is the same as The defibrillators used in the study citd@®CD 7220/

above. 7221, Medtronig are able to store at least 1000 beat-to-beat
intervals prior to the onset of V{10-ms resolutiop corre-
sponding to approximately 9—15 min. We reanalyze these
Heart-rate variability(HRV) typically shows a complex intervals from 17 chronic heart failure ICD patients just be-
behavior and it is difficult to identify disease specific patternsfore the onset of a VT and at a control time, i.e., without a
[34]. A fundamental challenge in cardiology is to find early following arrhythmic event. Time series including more than

V. APPLICATION TO HEART-RATE-VARIABILITY DATA
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TABLE I. Results of maximal diagonal and vertical line length just before a VT, the beat-to-beat intervals of the VT itself at
shortly before VT and at control time, and nonparametric Mann-the end of the time series are removed from the tachograms.

Whitney U-test: p represents significance; * is far<0.05; ** for We calculate all standard RQA parameters described in
p<0.01; ns for not significantp=0.05. Ref.[24] as well as the measures laminariy trapping time
T, and maximal vertical line lengtl .y (Similar to the
m & VT Control P maximal diagonal line length,,,,) for different embedding
Maximal diagonal line lengtht. ., dimensionsm and nearest neighboring radii We find dif-
3 77 306.6-253.8 261.5 156.6 ns ferences between both groups of data for several of the pa-
6 110 447 6 269.1 285 5 160.4 * rameters mentioned above. However, the most significant pa-
9 150 504.6- 265.9 311.6-157.2 . rameters ar&/,,, and L ., for rather large radi(Table I).
12 170 520 7 268.8 324 7180.2 * The_ vertical line lengthV,,ax is_ more p_owerful in discrimi-
Maximal vertical line lengttV, ., nating both groups than t_he diagonal line lengtky,, as can
3 77 261.4-193.5 169 2-135.9 " b(_-:' recogn!zed by tr_le highgr values forV,,,, (Table .
6 110 283.7-190.4 1795 1341 x Figure 4 gives a typical exa_lmple _of the recurrence plots be-
9 150 342 4 193.6 216.4-137 1 . fore avT and at a control time W|th an embed_dmg of 6 anq
12 170 353'&221'4 215-3t138-6 o a radius of 110. The RP before a life-threatening arrhythmia

is characterized by large black rectangl®¥s, (=242 here,
whereas the RP from the control series shows only small

) o ~_rectangles Vmax=117).
one nonsustained VT, with induced VTs, pacemaker activity

or more tha_m lQ% of ve_ntricular premature beats are not V1. SUMMARY

considered in this analysis. Some patients had several VTs;

we finally had 24 time series with a subsequent VT and the We have introduced three more RPs based measures of
respective 24 control series without a life-threatening arcomplexity, the laminarityA, the trapping timel, and the
rhythmia. In order to analyze only the dynamics occurringmaximal length of vertical structures in the RR, .. These

A B

1000 T T T T T T T T 51000
w 9
£ £
2 2
g 800 g 8001 1
2 2
S RS
H §
£ 600} 2 6ODY\MW~MAWWMAM«M
B I

400 . . . . . . . . 400 . . . . . " " .

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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Time [min}
Time [min]

Time [min] Time [min]

FIG. 4. Recurrence plots of the heart beat interval time series at a contro(diraed before a VT(b) with an embedding of 6 and a
radius of 110. The RP before a life-threatening arrhythmia is characterized by big black rectangles, whereas the RP from the control series
shows only small rectangles.
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measures of complexity have been applied to the logististored heart-rate data before the onset of a life-threatening
map and heart-rate-variability data. In contrast to the knowrarrhythmia seems to be very successful for the detection of
RQA measureg23,25, that are able to detect transitions laminar phases thus making a prediction of such VT pos-
between chaotic and periodic statemd vice versp our  sible. The differences between the VT and the control series
measures enable us to identify laminar states too, i.e., chaoare more significant than in Rgf26]. However, two limita-
chaos transitions. These measures are provided by the vertiens of this study are the relatively small number of time
cal lines in recurrence plots. The occurrence of vertieald  series and the reduced statistical analysis subdivisions
horizonta) structures is directly related to the occurrence ofconcerning age, sex, and heart dis¢aBer this reason, our
laminar states. results should to be validated on a larger database. Further-
The laminarityA enables us generally to detect laminar more, this investigation could be enhanced for tachograms
states in a dynamical system. The trapping timeontains including more than 10% ventricular premature beats. In
information about the frequency of the laminar states anconclusion, this study has demonstrated that the RQA based
their lengths. The maximal lengt¥,,., reveals information complexity measures could play an important role in the pre-
about the time duration of the laminar states thus making théiction of VT events even in short term HRV time series.
investigation of intermittency possible. Many biological data contain epochs of laminar states,
If the embedding of the data is too small, it will lead to which can be detected and quantified by the RP based mea-
false recurrences, which is expressed in numerous verticaures. We have demonstrated differences between the mea-
structures and diagonals perpendicular to the main diagonadures based on the vertical and the diagonal structures and
Whereas false recurrences do not influence the measuréiserefore we suggest the use of the method proposed in this
based on diagonal structures, the measures based on vertigalper in addition to the traditional measures.
structures are sensitive to it. A download of the Matlab implementation is available at
The application of these measures to the logistic equatiogmw.agnld.uni-potsdam.demarwan
for a range of various control parameters has revealed points
of laminar states without any additional knowledge about the
ch_aracterlsuc parameters or dynamical behawpr of thg spe- ACKNOWLEDGMENTS
cific systems. Neverthelesd,, V,ax, andT are different in
their magnitudes. Further investigations are necessary to un- This work was partly supported by the priority program
derstand all relations between the magnitude®/gf, and SPP 1097 of the German Science Foundati@FG).
the recognized chaos-chaos transitions. We gratefully acknowledge M. Romano, M. Thiel, and U.
The application of these complexity measures to the ICDSchwarz for fruitful discussions.
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Abstract

We present new measures of complexity and their application to
event related potential data. The new measures base on structures of
recurrence plots and makes the identification of chaos-chaos transitions
possible. The application of these measures to data from single-trials of
the Oddball experiment can identify laminar states therein. This offers
a new way of analyzing event-related activity on a single-trial basis.

1 Introduction

Neurons are known to be nonlinear devices because they become activated
when their somatic membrane potential crosses a certain threshold [Kan-
del et al., 1995]. This nonlinearity is one of the essentials in neural mod-
elling which leads to the sigmoidal activation functions of neural networks
[Amit, 1989]. The activity of large formations of neurons is macroscopically
measurable as the electroencephalogram (EEG) at the human scalp which
results from a spatial integration of postsynaptic potentials [Nunez, 1981].
However, it is an unsolved problem whether the EEG should be treated
as a time series stemming from a linear or a nonlinear dynamical system.
Applying nonlinear techniques of data analysis to EEG measurements has
a long tradition. Most of these efforts have been done by computing the
correlation dimension of spontaneous EEG [e.g. Babloyantz et al., 1985;
Rapp et al., 1986; Gallez and Babloyantz, 1991; Lutzenberger et al., 1992;
Pritchard and Duke, 1992]. Theiler et al. [1992] applied the technique of
surrogate data to correlation dimensions of EEG and reported that there is
no evidence of low-dimensional chaos but of significance for nonlinearity in
the data.

*email: marwan@agnld.uni-potsdam.de




While correlation dimensions are only well defined for stationary time se-
ries generated by a low-dimensional dynamical system moving around an
attractor, these measures fail in investigating event-related brain poten-
tials [ERPs, Sutton et al., 1965] since they are nonstationary by definition.
Traditionally, ERP waveforms are determined by computing an ensemble
average over a collection of stimulus time locked EEG trials. This is based
on the following assumptions: (1) the presentation of stimuli of the same
kind is followed by the same sequence of processing steps, (2) these pro-
cessing steps always lead to activation of the same brain structures, (3)
this activation always elicits the same pattern of electrophysiological activ-
ity, which can be measured at the scalp [Rosler, 1982] and (4) spontaneous
activity is stationary and ergodic [beim Graben et al., 2000].

By averaging the data-points time-locked to the stimulus presentation
(cf. Oddball experiment) it is possible to filter out the signal (ERP) of the
noise (spontaneous activity). In the next step the functional significance
of a component is assessed. Antecedent conditions of the occurrence of a
component and variables, which influence its parameters are defined. Now
the commonalities of these factors are identified. The generalization of all
empirically found influencing factors leads to a more abstract cognitive the-
ory of the functional meaning of a event-related potential component and
makes it usable for the validation of models of cognitive processes.

The disadvantage of the averaging method is the high number of trials
needed to reduce the signal-to-noise-ratio [Kutas and Petten, 1994]. This
is crucial for example for clinical studies, for studies with children and for
studies, in which repeating a task would influence the performance. So it is
desirable to find new ways of analyzing event-related activity on a single-
trial basis. Applying nonlinear methods to electrophysiological data could
be one way of dealing with this problem.

To compute dimensions of ERPs, Molnar et al. [1995] used the pointwise
dimensions and reported a drop of the pointwise dimension as a function
of time corresponding to the P300 component observed in the Oddball ex-
periment. Recently, concepts of information theory have been introduced to
analyse ERPs. On one hand this is the wavelet entropy of Quiroga et al.
[2001] and on the other hand symbolic dynamics of EEG and ERP [beim
Graben et al., 2000; Frisch et al., 2002; Steuer, 2002; Schack, 2002].

A further promising approach is the recurrence quantification analysis (RQA),
which is based on the quantification of the diagonal oriented structures in
recurrence plots [RPs, Webber Jr. and Zbilut, 1994; Zbilut and Webber
dr., 1992]. The RQA was broadly applied in a wide field of the analysis of
physiological data [e.g. Casdagli, 1997; Faure and Korn, 1998; Thomasson
et al., 2001; Marwan et al., 2002]. The important advantage of methods
based on the quantification of RPs is that the required data length can be
relatively short. However, the measures of the classical RQA are only able
to recognize transitions between periods and chaos and vice versa [Trulla
et al., 1996]. In this work, we will use recently introduced additional mea-
sures based on RPs in order to find chaos-chaos transitions in physiological
data. These new measures use the vertical structures in the RP and are
able to identify laminar states [Marwan et al., 2002].



In the first section we will give a short introduction into RPs and their
quantification analysis. In the next section we will introduce the new mea-
sures and finally we will apply them to event related potential data gained
from the Oddball experiment.

2 Recurrence Plots and Their Quantification

The method of recurrence plots (RP) was introduced to visualize the time
dependent behavior of the dynamics of systems, which can be pictured as a
trajectory in the phase space [Eckmann et al., 1987]. It represents the re-
currence of the m-dimensional phase space trajectory #; €¢ R™ (i =1,..., N,
time discrete) to a certain state. The main step of this visualization is the
calculation of the NV x N-matrix

Ri,j:: @(62—||fl—fj||), i,jzl...N, (1)

where ¢; is a state dependent cut-off distance, || - || is the norm of vectors, ©
is the Heaviside function and N is the number of states. The phase space
vectors for one-dimensional time series u; from observations can be recon-
structed with the Taken’s time delay method #; = (u;, uitr, .-, Uit (m—1)+)
with dimension m and delay 7 [Kantz and Schreiber, 1997]. The recurrence
plot exhibits characteristic large-scale and small-scale patterns which are
caused by typical dynamical behavior [Eckmann et al., 1987; Webber Jr.
and Zbilut, 1994], e.g. diagonals (similar local time evolution of different
parts of the trajectory) or horizontal and vertical black lines (state does not
change for some time).

Zbilut and Webber have developed the recurrence quantification analysis
(RQA) to quantify an RP [Webber Jr. and Zbilut, 1994; Zbilut and Webber
dJr., 1992]. They defined measures using the recurrence point density and
diagonal structures in the recurrence plot, the recurrence rate RR (den-
sity of recurrence points), the determinism D ET (ratio of recurrence points
forming diagonal structures to all recurrence points), the maximal length of
diagonal structures L,,,,. (or their averaged length L), the Shannon entropy
ENT ofthe distribution of the diagonal lengths and the trend TREN D (pal-
ing in the RP). The computation of these measures in shifted windows along
the main diagonal of the RP enables one to find characteristic excursions of
the trajectory in the phase space of the considered systems.

Trulla et al. have applied these measures in order to find transitions in
dynamical systems [Trulla et al., 1996]. They have showed, that the RQA
is able to find transitions between chaos and order (periodical states). But
they could not find the chaos-chaos transitions.

3 Laminarity and Trapping Time

We have recently introduced two additional measures which are based on
the vertical structures in the RP [Marwan et al., 2002]. We define these



measures analogous to the definition of DET and L, but we consider the
distribution P(v) of the length of the vertical structures in the RP.

First, the laminarity LAM

N
LAM = 2u=2"P) (@)
Ev:l UP(U)

is the ratio of recurrence points forming vertical structures to all recurrence
points and represents the probability of occurrence of laminar states in the
system, but it does not describe the length of these laminar phases. It will
decrease if the RP consists of more single recurrence points than vertical
structures.

Next, the trapping time T'T

N
T :— EU;Q ’UP(’U) , (3)

E’u:Z P(v)

is the averaged length of the vertical structures. The measure 77T contains
information about the amount and the length of the laminar phases.

The difference between these measures and the traditional RQA measures
is their ability to find transitions between chaos and chaos [Marwan et al.,
2002]. For example, such transitions can be found in the logistic map
Zpy1 = axy (1 —x,) with increasing control parameter a € [0,4] and z,, €
[0,1] C R. For such trajectories z(a) which contain laminar states (e.g. a =
3.678,3.791,3.927), LAM and T'T show pronounced maxima (Fig. 1). The
application of these measures to heart rate variability data, has shown,
that they are able to detect and quantify laminar phases before a life-
threatening cardiac arrhythmia and, thus, to enable a prediction of such
an event [Marwan et al., 2002]. These findings can be of importance for the
therapy of malignant cardiac arrhythmias.

In the next section we will apply this extended RQA to physiological data.

4 Event Related Potentials

4.1 The Oddball experiment

As mentioned in the Introduction, the Oddball experiment studies brain
potentials during a stimulus presentation.

The measurement of the EEG was done with 31 electrodes/ channels (Tab. 1).
The first 25 electrodes were localized as shown in Figure 2; the others were
reference electrodes. The sample interval for the measurements was 4 ms.

Probands were seated in a dimly lit room in front of a monitor and were in-
structed to count tones of high pitch. Each subject was tested in nine blocks.
The blocks varied in the probability of occurrence of the higher tones from
10 to 90 %. Each block contained at least 30 target tones. Response was
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Figure 1: Laminarity (B) and trapping time (C) of time series gained from

the logistic map for various control parameters (A). These measures reveal

laminar and intermittent states. The vertical dotted lines show a choosing

of points of band merging and laminar behaviour (a« = 3.678, 3.727, 3.752,

3.791, 3.877, 3.927). The length of the data were N = 1000 and the embed-
ding parameters were m = 1,7 = 1l and e = 0.1.
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Figure 2: Localization of the electrodes on the head.

Table 1: Notation of the electrodes and their numbering as it is used in the
figures (electrodes 26-31 are reference electrodes).
# Electrode # Electrode

1 F7 14 T8

2 FC5 15 P7

3 F3 16 PZ

4 FZ 17 P3

5 F4 18 CZ

6 FC6 19 P4

7 F8 20 P8

8 T7 21 0OZ

9 CP5 22 POZ
10 C3 23 PO3
11 FCZ 24 CPZ
12 C4 25 PO4
13 CP6




given in a three alternative choice (using cursor keys of the keyboard). Dur-
ing the test, the EEG was recorded. The stimuli were computer-generated
beeps of 100 ms length. Tones were either high (1400 Hz) or low (1000 Hz).
They were presented with an interstimulus interval of 1000 ms.

After computing event-related voltage averages for the experimental ma-
nipulations (10% up to 90 % target probability) one can observe a P300
ERP component whose amplitude is anti-correlated to the probability of
the stimuli (surprise ERP, Fig. 3).

ERP90
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Figure 3: Mean event related potentials for event frequencies of 90 % (left,
40 trials) and 10 % (right, 31 trials). The N100 and P300 components are
well pronounced for the frequencies of 10 %. The lower plots show the ERP
of selected electrodes. The reference of the electrode numbers is given in
Table 1.

The P300 component of the ERP was the first potential discovered to vary
in dependence on subject-internal factors like attention and expectation in-
stead of physical characteristics [Sutton et al., 1965]. The amplitude of the
P300 component is highly sensitive to novelty of an event and its relevance.
So this component is assumed to reflect the updating of the environmental
model of the information processing system [context updating, Donchin,
1981; Donchin and Coles, 1988].

4.2 Data analysis

Our focus will be directed to the ERP data of two extreme event proba-
bilities. Henceforth, the time (measured in ms) is denoted as ¢, the trial
number as ¢ and the electrode as e (the allocation of the electrode numbers
with their notion, see Fig. 2).



The first set ERP90 contains 40 trials of ERP data for an event frequency of
90 % and the second set ERP10 contains 31 trials for an event frequency of
10 %. Both data sets can be rather well discriminated in the N100 and P300
components by the average over all trials (Fig. 3). As expected, both com-
ponents have increased for lower event probabilities (ERP10). The maxima
of the P300 are located around the central and central-parietal electrodes.
However, the single trials do not obtain such a clear result. The P300 com-
ponent is only well pronounced in 15 trials. When the single trials are
observed, then extreme values can also occur in the ERP90 data and van-
ish in the ERP10 data (Fig. 4). We applied also a statistical variance-based
T-test to the single trial ERP data. However, this method could also not
clearly distinguish the single trials.
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Figure 4: Event related potentials for selected trials of the event frequen-
cies of 90 % (left) and 10 % (right). Both, ERP10 and ERP90 of single trials
can be strongly or weakly pronounced, respectively, which makes their dis-
crimination difficult. The reference of the electrode numbers are given in
Table 1.

The recurrence quantification analysis (RQA) is based on the structures
obtained by recurrence plots (RPs). The RPs were firstly computed for the
means of ERP90 and ERP10 over all trials and then for the single trials.
This was done with the embedding parameters m = 3, 7 =3 and e = 10%
(fixed amount of nearest neighbours). The embedding parameters were es-
timated by using the standard methods false nearest neighbours (dimen-
sion) and mutual information (delay) [Kantz and Schreiber, 1997]. Due
to the N100 and the P300 components in the data, the RPs show varying
structures changing in time (Fig. 5). Diagonal structures and clusters of
black points occur. The nonstationarity of the data around the N100 and
P300 causes extended white bands along these times in the RPs. However,



the clustered black points around 300 ms occur in almost all RPs of the

ERP10 data set.
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Figure 5: ERP data for event frequencies of 90 % (upper left) and 10 % (up-
per right), and their corresponding recurrence plots (lower plots). For the
lower event frequency, more cluster of recurrence points occur at 100ms and
300ms.

The RQA was computed from the RPs of ERP90 and ERP10 for the single
trials, in sliding windows over the RPs (which have the dimension m = 3)
with a length of 240 ms and with a shifting step of 8 ms. This window
length corresponds with a data length of 60 values.

The mean of all RQA variables of ERP10 reveal typical structures in the
data (Fig. 6, right column). They indicate the transitions corresponding
to the N100 and P300 components around the central electrodes. The RQA
variables for the ERP90 do not reveal these transitions (Fig. 6, left column).
The onset of the increasing of the parameter is about 120 ms before the
event. This is due to the windowed analysis of the RPs (240 ms windows).
We have chosen the middle of the RP window for the time, what results in
a 120 ms earlier onset of the RQA variables.

The four RQA variables are quite different, especially in their amplitude.
For ERP10, LAM and T'T are the best pronounced parameter and have two
distinct maxima at some electrodes; DET and L reveal these maxima at
these electrodes too, but are lesser pronounced (Fig. 6). These maxima occur
at the transition around 100 ms and 300 ms after the event and occur at the
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Figure 6: Averaged RQA measures for the ERP data of both event frequen-
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electrodes F3, F4, FZ, C3, FCZ, PZ, POZ and PO3. Differences between the
various transitions found by these measures also occur in time and brain
locations (electrodes). But, the study was not detailed enough in order to
give reliable results.

The analysis of the single trials achieves similar results (Figs. 7 and 8 show
the results for selected trials). The LAM clearly found the N100 and P300
components for ERP10 in 26 trials (of 31), but not for the ERP90 trials. The
other measures have lesser maxima and, thus, are not suitable for such
recognition.

This result indicates that our introduced measures of complexity (espe-
cially LAM) are able to recognize transitions in brain potentials, which are
caused by e.g. stimulative events. These transitions can be found in the
single trials, which is an improvement to the classical method of averaging
all observations.

5 Summary

We have applied an extended recurrence quantification analysis (RQA) to
physiological event related potential data (ERP). The classical RQA con-
sists of measures which are mainly based on diagonal structures in the
recurrence plots (RPs), e.g. the determinism (D ET), which is the ratio of
recurrence points located on connected diagonal structures in the RP, and
the averaged diagonal line length (L). We have extended the RQA with
two recently introduced measures, the laminarity (LAM) and the trapping
time (7'T). These measures are analogously defined as DET and L, but pro-
vided by the vertical structures in recurrence plots. Whereas the classical
RQA enables the identification of period-chaos transitions, the new mea-
sures make the identification of chaos-chaos transitions and laminar states
possible.

The classical method to study ERP data is to average them over many trials.
Our aim was to study the single trials in order to find transitions in the
data.

The application of the extended RQA to ERP data has discriminated the
single trials with a distinct P300 component due to a high surprise moment
(less frequent events) against such trials with a low surprise moment (high
frequent events). Considering the raw ERP10 data, the P300 component
can only be found in the half of all trials. Also a statistical variance test
fails to distinguish cleary the trials. The LAM is the most pronounced pa-
rameter in this analysis. It measures the ratio of recurrence points located
on connected vertical structures in an RP. This structures correspond with
laminarity within the underlying process. In the ERP data, the LAM re-
veals transitions from less laminar states to higher laminar states after
the occurrence of the event and a transition from higher laminar states
to less laminar states after about 400 ms. These transitions occur around
bounded brain areas (parietal to frontal along the central axis). The com-
parable measures DET/ LAM and L/ TT are quite different in their am-
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Figure 7: RQA measures for selected single trials and the central-parietal
electrode (black). The trial-averaged RQA measures for the same electrode
is shown in blue (the light blue band marks the 95 % significance interval).
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plitude. There should also be differences in time and brain location of the
found transitions.

These results show that the measures based on vertical RP structures make
the identification of transitions possible, which are not found by the clas-
sical RQA measures. They indicate transitions in the brain processes into
laminar states due to the surprising moment of observed events.

A future work will be concerned with the development of a statistical eval-
uation of these results. Furthermore, this investigation has to be extended
to ERP data gained from other frequent events and a detailed study of the
comparable measures DET/ LAM and L/ TT should give hints about the
different transitions in the brain processes.
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Abstract

We use the extension of the method of recurrence plots to cross recurrence plots (CRP) which enables a nonlinear analysis
of bivariate data. To quantify CRPs, we develop further three measures of complexity mainly basing on diagonal structures in
CRPs. The CRP analysis of prototypical model systems with nonlinear interactions demonstrates that this technique enables to
find these nonlinear interrelations from bivariate time series, whereas linear correlation tests do not. Applying the CRP analysis
to climatological data, we find a complex relationship between rainfall and EI Nifio data.
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1. Introduction are methods to estimate fractal dimensions, Lyapunov
exponents or mutual information [2-5]. However,
most of these methods need long data series. The
uncritical application of these methods especially to
natural data often leads to pitfalls.

To overcome the difficulties with nonstationary and
rather short data series, the methodagiurrence plots
(RP) has been introduced [6—8]. An additional quan-
titative analysis of recurrence plots has been devel-
oped to detect transitions (e.g., bifurcation points) in

A major task in bi- or multivariate data analysis
is to compare or to find interrelations in different
time series. Often, these data are gained from natural
systems, which show generally nonstationary and
complex behaviour. Furthermore, these systems are
often observed by very few measurements providing
short data series. Linear approaches of time series
g??jzts: ?;eﬂ?:?;s??\tvzuggzgz? ; r;;?g;te\}g:ises ngf complex systems [9—12]. An extension of the method

nonlinear techniques has been developed to analyze,?(;c :ﬁsg;?rgf; Ft)rlgsﬂ:ﬁeczjojsefdc;:{eﬁ:ﬁas:gLSr %?is\lgs
data of complex systems (cf. [1,2]). Most popular 9 P

processes which are both recorded in a single time se-
ries [13,14]. The basic idea of this approach is to com-
T Corre . pare the phase space trajectories of two processes in
orresponding author. . . .
E-mail addressmarwan@agnld.uni-potsdam.de the same phase space. The aim of this Letter is to de-
(N. Marwan). velop further new measures of complexity, which are
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based on cross recurrence plots and to evaluate thedoes not change for some time). A single recurrence
similarity of the considered systems. This nonlinear point, however, contains no information about the state
approach enables to identify epochs where there areitself.
linear and even nonlinear interrelations between both ~ As a quantitative extension of the method of re-
systems. currence plots, theecurrence quantification analy-
Firstly, we give an overview about recurrence plots sis (RQA) was introduced by Zbilut and Webber [10,
and cross recurrence plots and, than, we develop 11]. This technique defines several measures mostly
further new measures of complexity. Lastly, we apply based on diagonal oriented lines in the recurrence
the method to two model systems and to natural plot: recurrence rate determinism maximal length
data. of diagonal structuresentropy and trend The re-
currence rateis the ratio of all recurrent states (re-
currence points) to all possible states and is there-
2. Recurrenceplot fore the probability of the recurrence of a certain
state. Stochastic behaviour causes very short diago-
The recurrence plot (RP) is a tool in order to vi- nals, whereas deterministic behaviour causes longer
sualize the dynamics of phase space trajectories anddiagonals. Therefore, the ratio of recurrence points
was firstly introduced by Eckmann et al. [7]. Follow- forming diagonal structures to all recurrence points
ing Takens’ embedding theorem [15], the dynamics is called thedeterminism(although this measure does
can be appropriately presented by a reconstruction of not really reflect the determinism of the system). Di-

the phase space trajectafyr) from a time seriesi agonal structures show the range in which a piece of
(with a sampling timeAr) by using an embedding di- the trajectory is rather close to another one at dif-
mensionm and a time delay ferent time. Thediagonal lengthis the time span

R R ) they will be close to each other and their mean
X() =xi = Wi, Uitr, .., Uit(m-1)7), =IAL.

can be interpreted as the mean prediction time. The
(1) inverse of the maximal line length can be inter-
The choice ofm andt are based on standard meth- preted to be directly related with the maximal pos-
ods for detecting these parameters like method of jtive Lyapunov exponent [7,9,16]; in this interpre-
false nearest neighbours (far) and mutual informa-  tation it is assumed that the considered system is
tion (for ), which ensures the entire covering of all chaotic and has no stochastic influences. Since real
free parameters and avoiding of autocorrelation ef- (natural) systems are always affected by noise, we
fects [2]. suggest that this measure has to be interpreted in
The recurrence plot is defined as a more statistical way, for instance, as a predic-
R, ':@(8‘ B ”)_C, s ) @) tion time. Hovyever, if we consider a chaotic sys-
by ! Lo tem, the maximal positive Lyapunov exponent is
wheree; is a predefined cut-off distancg, | is the much more reflected in the distribution of the line

norm (e.g., the Euclidean norm) a@dx) is the Heav- lengths. Theentropyis defined as the Shannon en-
iside function. The valuesne and zero in this ma- tropy in the histogram of diagonal line lengths. Sta-
trix can be simply visualized by the colours black and tionary systems will deliver rather homogeneous re-
white. Depending on the kind of the application, currence plots, whereas nonstationary systems cause
can be a fixed value or it can be changed for each changes in the distribution of recurrence points in
in such a way that in the ball with the radigsa pre- the plot visible by brightened areas. For example,

defined amount of neighbours occurs. The latter will a simple drift in the data causes a paling of the
provide a constant density of recurrence points in each recurrence plot away from the main diagonal to
column of the RP. Such a RP exhibits characteristic the edges. The parametéend measures this ef-
large-scale and small-scale patterns which are causedect by diagonal wise computation of the diago-
by typical dynamical behavior [7,10,12], e.g., diago- nal recurrence density and its linear relation to the
nals (similar local evolution of different parts of the time distance of these diagonals to the main diago-
trajectory) or horizontal and vertical black lines (state nal.
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3. Crossrecurrenceplot below the main diagonal, which represent positive and
negative time delays, respectively.
Analogous to Zbilut et al. [13], we will use the The recurrence rateRis now defined as
recently expanded method of recurrence plots to the N—t
method ofcross recurrence plotsvhich comparesthe  RRy)=——— Z 1P, (D), (3)
dynamics represented in two time series. Herein, both -

time series are simultaneously embedded in the same; g reveals the probability of occurrence of similar

phase space. The test for closeness of each point ofgiaie65 in both systems with a given defayA high
the first trajectoryx; (i = 1,..., N) with each point

- S X density of recurrence points in a diagonal results in a
of the second trajectory; (j =1,.... M) resultsin  pigh vajue ofRR This is the case for systems whose
aN x M array CR; ; = ©(e — ||x; — y;||) called

_ . trajectories often visit the same phase space regions.
the cross recurrence plot (CRP). Visual inspection

) ) Analogous to the RQA the determinism
of CRPs already reveals valuable information about N
the relationship between both systems. Long diagonal BET(r) — It [P (D) 4
structures show similar phase space behaviour of both (1) = )

: >S Show sim . . SNPQO)
time series. It is obvious, that if the difference of both . N . .
systems vanishes, the main diagonal line will occur 'S the proportion of recurrence points forming long

black. An additional time dilatation or compression of diagonal structures of all recurrence points. Stochastic
one of these similar trajectories causes a distortion of as welllas heavily fluctuating datq cause none or only
this diagonal line [14]. In the following, we suppose short diagonals, whereas deterministic systems cause

that both systems do not have differences in the time 1oN9€r diagonals. If both deterministic systems have
scale and have the same lengthhence, the CRP is the same or similar pha}se space behaviour, i.e., parts
a N x N array and an increasing similarity between of the phase space trajectories meet the same phase

both systems causes a raising of the recurrence point>Pac€ regions dl_mng certain times, the amount of
density along the main diagonal until a black straight anger diagonals increases and the amount of smaller
main diagonal line occurs (cf. Fig. 3). Finally, the diagonals decrea;es. .

CRP compares the considered systems and allows us The average diagonal line length

to benchmark their similarity. Y LR (D)
Lt)y=—Fx7"—— (5)
[=Imin Pt (l)
4. Complexity measures based on cross reports the duration of such a similarity in the dynam-
recurrenceplots ics. A high coincidence of both systems increases the

length of these diagonals.

Next, we will define some modified RQA measures High values ofRRrepresent high probabilities of
for quantifying the similarity between the phase space the occurrence of the same state in both systems, high
trajectories. Since we use the occurrence of the morevalues of DET and L represent a long time span of
or less discontinuous main diagonal as a measurethe occurrence of a similar dynamics in both systems.
for similarity, the modified RQA measures will be WhereadDET andL are sensitive to fastly and highly
determined for each diagonal line parallel to the main fluctuating dataRR measures the probabilities of the
diagonal, hence, as functions of the distance from the occurrence of the same states in spite of these high
main diagonal. Therefore, it is also possible to assessfluctuations (noisy data). It is important to emphasize
the similarity in the dynamics depending on a certain that these parameters are statistical measures and that
delay. their validity increases with the size of the CRP.

We analyze the distributions of the diagonal line Compared to the other methods, this CRP tech-
lengthsP; (/) for each diagonal parallel to the main di- nique has important advantages. Since all parameters
agonal. The indexe [T, ..., T] marks the number  are computed for various time delays, lags can be iden-
of the diagonal line, where= 0 marks the main diag- tified and causal links proposed. An additional analy-
onal,t > 0 the diagonals above and 0 the diagonals  sis with opposite signed second time series allows
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3
us to distinguish positive and negative relations. To |
1
0

recognize the measures for both cases, we add the in- | v
dex ‘4’ to the measures for the positive linkage and z of 1
the index -’ for the negative linkage, e.gRR; and -1t 1

RR_. A further substantial advantage of our method -2y,

is the capability to find also nonlinear similarities in =~ 3, % 5 0 12 17 1 18 2

short and nonstationary time series with high noise x

levels as they typically occur, e.g., in biology or earth 3

sciences. However, the shortness and nonstationarity 2
1
0

of data limits this method as well. One way to re-
duce problems that occur with nonstationary data is
the alternative choice of the neighbourhood as a fixed

9(x)
1

amount of neighbours in the ball with a varying ra- | i ‘
diuse. A further major aspect is the reliability of the e 2 4 6 8 M0 iz a0 18 20
found results. Until a mature statistical test is devel-
oped, a first approach could be a surrogate test. Fig. 1. Two delayed sine functions, one of them corrupted by addi-
In the next section we apply these measures of V& White noise (8).
complexity to prototypical model systems and to real —_—
data. P e, e — S
= - — S
= = = ==
5. Examplesillustrating the CRP = ——— T =
| —p——— | —elp——— e —p——— e
e e T . T T —
5.1. Noisy periodic data e == == __-—=
R e e === ==
First, we consider a classical example to check s BE=— — — ==
whether our technique is there compatible with linear g 10— ——=——  ———  —_——
~ = —— —— ———

statistical tools: two sine function&x) andg(x) with
the same period (2), whereby the second function

L

g(x) is shifted by /2 and strongly corrupted by — —_— = ——

additive Gaussian white noigec [—1, 1]; the signal E— — —

to noise ratio is 0.5 (Fig. 1). Both time series have —_—= == === =

a length of 500 data points with a sampling rate of = = = ——— — ]

27/100. — = == _—=
We apply our analysis witlm = 3, T = 7/2 and 5 10 15 20

e = 1.5 (fixed radius, Euclidean distance). The CRP Time in ()

shows diagonal structures separqted by gap.s (Fig. 2)'Fig. 2. Cross recurrence plot for two delayed sine functions (Fig. 1)
These gaps are the result of the high fluctuation of the th an embedding ofr = 3, - = 7/2 ands = 1.5. The diagonal
noisy sine function. Due to the periodicity of these lines in the CRP result from similar phase space behaviour of both
functions, the diagonals have a constant distance to functions.
each other equal to the value of the periog 2. The
interrupted diagonal structures consist of a number of functions also show maxima for positive and negative
short diagonals. However, these are long enough to relation betweery (x) andg(x). These maxima occur
achieve significant maxima in the measurd® DET with the same lagsr/2 like the linear correlation
andL. test (Fig. 3B-D). Despite the high noise level, these
As expected, in this example the classical cross- measures find the correlation. Hence, the result of
correlation function shows a significant correlation this CRP analysis agrees with the linear correlation
after a lag ofr/2 (Fig. 3A). TheRR DET and L analysis.
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Fig. 3. Cross-correlation (A)RR(B), DET (C) andL (D) for two (frequencies) are 2.9 (0.34) and 1.1 (0.94)4¢C) and 0.77 (1.30)

delayed sine functionsL has the unit of time. The solid black  and 0.96 (1.05) foy (D).

lines show positive relation, the dashed lines show negative relation.

The dash-dotted line in (A) marks the 5% confidence interval. All

functions (A)—(D) detect the correlation after a lagmof2. k €[0, 3] and for 500 independent realizations. The

major periods of the systemare 2.9 and 1.1, whereas

Due to the noisy data, the trajectories strongly the major periods of the selected realization of the

fluctuate in the phase space. Therefore, only short systemy shown in Fig. 4 are 0.77, 0.96 and 0.59

diagonal lines in the CRP occur and the means of the (ordered from highest to lower).

measure®ET andL have (relative) small values. The cross correlation analysis of and y do
not reveal a significant linear correlation between
5.2. System with nonlinear correlations them (Fig. 6A,B). The linear correlation does not

increase for a growing coupling strengthHowever,

The next example is concerned to a nonlinear the mutual information shows a strong dependence
interrelation between systems. We will study this betweenx andy at delays of 05, —0.29 and 044
interrelation by using a standard linear method (cross (Fig. 6C,D). This measure increases for a growing
correlation), a standard method from nonlinear data coupling. Analogous results can also be found with
analysis (mutual information, cf. [2]) and the new other nonlinear techniques which are designed for the
proposed measures. We consider linear correlatedstudy of interrelations as described in [19,20].
noise (autoregressive process), which is nonlinearly  The CRP of the driven AR-process (Eq. (6)) with
coupled with thex-component of the Lorenz system thex-componentofthe Lorenz system & 5,t =10,
x(t) (solved with an ODE solver for the standard ¢ = 2) contains a lot of longer diagonal lines, which
parameterss = 10, r = 28, b = 8/3 and a time represent time ranges in which both systems have a
resolution ofAr = 0.01, [17,18]). We use a first order  similar phase space dynamics (Fig. 5). The results of
autoregressive procegs and force it with the squared  the quantitative analysis of the CRP is strongly differ-
x-component ent from those of the linear analysis. It is important
to note that the linear correlation analysis is here not

— 2
Yn = 0.86y,-1 4 0.500, + ;. () able to detect any significant coupling or correlation
where¢ is Gaussian white noise ang (x(z) — x,, between both systems (Fig. 6A and B).
t = nAt) is normalized to standard deviatian= 1 Our measures of complexity exhibit the following:

(Fig. 4). The data length is 8000 points. The coupling RR and L exhibit maxima at a lag of about.@b
Kk is realized without any lag. In order to study the for RR,/Ly andRR_/L_ and additionally at @5
behaviour of the proposed measures as a functionand —0.32 for RR_/L_ (Fig. 7A,E). The delay of
of the coupling strength, we compute the CRPs for about 005 stems from the auto correlation of
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Time in forced system

Time in Lorenz system

Fig. 5. Cross recurrence plot for the forced autoregressive process
y (Fig. 4B) and the forcing functionx¢component of the Lorenz
system, Fig. 4A) for a coupling strength= 0.2 and an embedding
m=>51t=10,e =2.

and approximately corresponds to its correlation time
At/In0.86= 0.066. The other both delays are in the
sum Q77 which suggests, that they are due to an
interference of the main periods of the systeBIET .
andDET_ has also maxima at these delays, but these
maxima are not significant in the sense that the values
exceed the @-level of the DET distribution gained
from 500 realizations (Fig. 7C). This is due to the rapid
fluctuating ofy and, thus, the less amount of longer
diagonal structured (> 3). The reconstructed phase
space trajectories of andy do not run parallel for
some time.

The three measures have a slightly different de-
pendence on the coupling strengthwhereasRRin-
creases rather fast with growing DET increases
slower andL increases much slower with growinrg
(Fig. 7B,D,F). In comparison with the mutual infor-

mation, the proposed measures have a similar regime,

but especiallyDET and L, spread stronger. However,
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Fig. 6. Cross-correlation (A), (B) and mutual information (C), (D)
for the forced autoregressive process and the forcing function; (A)
and (C) represents the measures for one realization as functions
of the delay and for a coupling = 0.2, (B) and (D) represents
the measures for one realization (dots) and averaged (line) as
functions of the coupling strength (for a delay of zero). The
dash-dotted lines in (A) mark the significance level of 5% for the
linear correlation between andy, the gray bands in (B), (C) and
(D) mark the 2 margin of the distributions of the measures gained
from the 500 realizations. The cross-correlation function does not
find a significant correlation, but the mutual information shows
significant interrelations between and y at delays of M5, 04

and —0.3. The correlation coefficient does not clearly change for
a growing coupling strength (B), however, the mutual information
monotonically increases with a growing coupling strengtbp to

x =1 and does not change for> 1 (D).

analysis is not able to detect this relation. In this
example DET does not reveal the nonlinear relation,
because the rapidly fluctuation in kicks away the
reconstructed phase space trajectory from the parallel
running to the trajectory of. Since the result is rather
independent of the sign of the second data before the
embedding, the found relation is of the kind of an even
function.

5.3. Climatological data

The last example shows the potential of the CRPs
in order to find interrelations in natural data. We inves-

this spread depends on the length of the consideredtigate, whether there is a relation between the precipi-

data and decreases for longer data sets.
Finally we can infer, that the measur&R and
L are suitable in order to find the nonlinear relation

tation in an Argentinian city and the EI Nifio/Southern
Oscillation (ENSO). Power spectra analysis of local
rainfall data found periodicities of 2.3 and 3.6 years

between the considered data series, where the linearwithin the ENSO frequency band [21].
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Fig. 7.RR (A), (B), DET (C), (D) andL (E), (F) for the forced
autoregressive process and the forcing functiBnh@s the unit

of time). The solid lines show positive relation, the dashed lines
show negative relation. The gray bands mark then2argin of the
distributions of the measures gained from the 500 realizations; only
the 2 margins forRRy, DET and L4 are shownRRy/L 4 and
RR_/L_ have clear maxima for a lag about08, RR_ and L_

have additionally maxima at.9 and —0.3, which is the similar
behaviour as the mutual information. The dependence from the
coupling strengthc is slightly different. WhereaRRR increases
rather fast with growinge (B), DET increases slower (D) and
increases much slower (F) with growirg Since the maxima occur
for RRy, DET4 andL — as well as foRR_, DET_ andL_, the
found relation is of the kind of an even function.

For our analysis we use monthly precipitation
data from the city San Salvador de Jujuy in NW
Argentina for the time span 1908-1987 (data from
[22]). The behaviour of the ENSO phenomenon is well
represented by the Southern Oscillation Index (SOI),
which is a normalized air pressure difference between
Tahiti and Darwin (Fig. 8; data from the Climate
Server of NOAA, 1999 http://ferret.wrc.noaa.gov
Negative extremain SOl data mark El Nifio events and
positive extrema La Nifia events. We use the monthly

SOl data for the same time span as the rainfall data.

Both data sets have lengths of 960 points.
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Fig. 8. (A) Southern oscillation index (SOI) and (B) rainfall data of
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Fig. 9. Cross recurrence plot of SOI vs. precipitation data from the
city of San Salvador de Jujuy for an embeddingct 3, r = 4 and

¢ =1.3. Thex-axis shows the time along the phase space trajectory
of the SOI and the-axis that of JUY.

The cross correlation function and the mutual
information show rather small correlatian= 0.14
between both data series with time delays of around
3 and 7 months, respectively (Fig. 10A,B).

After normalization of the data, the CRP with
m=3, 1t =4 ande = 1.3 is calculated and shows
several structures (Fig. 9).
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Fig. 10. Cross correlation (A), mutual information (B) and CRP parameters (C)—(E) of SOI vs. precipitation data from the city of San Salvador
de Jujuy (JUY). In (C)—(E), the solid lines show positive relation, the dashed lines show negative relation. The dashed-dotted lines in (A) mark
the 5% confidence interval. The maxima of the measures reveal an interrelation between the rainfall and the ENSO.

The CRP analysis of local rainfall and SOl is done the ENSO phenomenon and local rainfall in NW Ar-
with a predefined shortest diagonal lengthy, = 6. gentina.
The analysis reveals maxima for the complexity mea-
suresRR;, DET, and L, for correlated behaviour
around a delay of zero months, whereas the measures. Conclusions
for anti-correlated behaviol®RR_, DET_ andL_ in-
crease after about five months (Fig. 10). This result  We have modified the method of cross recurrence
enables to conclude a positive relation between ENSO plots (CRPs) in order to study the similarity of two
and the local rainfall. This gives some indication that different phase space trajectories. Local similar time
the occurrence of an El Nifio (extreme negative SOI) evolution of the states becomes then visible by long
at the end of a year causes a decreased rainfall in thediagonal lines. The distributions of recurrence points
rainy season from November to January and the oc- and diagonal lines along the main diagonal provides
currence of a La Nifia (extreme positive SOI) causes an evaluation of the similarity of the phase space tra-
an increased rainfall during this time of the year. This jectories of both systems. We have introduced three
conclusion extends the results obtained by power spec-measures of complexity based on these distributions.
tra analysis, where the similar periodicities in both They enable to quantify a possible similarity and in-
SOI and local rainfall data were found [21]. These terrelation between both dynamical systems. We have
analysis show that a source for inter-annual precipi- demonstrated the potentials of this approach for typi-
tation variability in NW Argentina is the ENSO [21].  cal model systems and natural data. In the case of lin-

The linear correlation analysis finds the correlation, ear systems, the results with this nonlinear technique
however, it is scarce above the significance and its agree with the linear correlation test. However, in the
mean at a lag of three months. The mutual informa- case of nonlinear coupled systems, the linear correla-
tion does not reveal a clear sign for interrelation be- tion test does not find any correlation, whereas non-
tween the data. It has small maxima at delays of 7 and linear techniques, as the mutual information, and the
—10 months. In contrast, all the complexity measures proposed complexity measures clearly reveal this re-
RR DET andL show a significant result and decom- lation. Additionally, the latters determine the kind of
pose the correlation in a positive one with no delay and coupling as to be an even function. The application
in a negative one with a delay of about five months, to climatological data enables to find a more complex
what suggests a more complex interrelation between relationship between the El Nifio and local rainfall in
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NW Argentina than the linear correlation test, the mu-
tual information or the power spectra analysis yielded.
Our quantification analysis of CRPs is able to find

nonlinear relations between dynamical systems. It pro-

vides more information than a linear correlation analy-
sis and the nonlinear technique of mutual information
analysis. The future work is dedicated to the develop-
ment of a significance test for RPs and the complexity
measures which are based on RPs.

Acknowledgements

This work is part of the Special Research Pro-
gramme Geomagnetic variations: Spatio-temporal

307

[5] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16
(1985) 285.

[6] M.C. Casdagli, Physica D 108 (1997) 12.

[7] 3.-P. Eckmann, S.O. Kamphorst, D. Ruelle, Europhys. Lett. 5
(1987) 973.

[8] M. Koebbe, G. Mayer-Kress, Use of recurrence plots in the
analysis of time-series data, in: M. Casdagli, S. Eubank (Eds.),
Proceedings of SFI Studies in the Science of Complexity,
Nonlinear Modeling and Forecasting, Vol. XXI, Addison-
Wesley, Redwood City, 1992, pp. 361-378.

[9] L.L. Trulla, A. Giuliani, J.P. Zbilut, C.L. Webber Jr., Phys. Lett.
A 223 (1996) 255.

[10] C.L. Webber Jr., J.P. Zbilut, J. Appl. Physiol. 76 (1994) 965.

[11] J.P. Zbilut, C.L. Webber Jr., Phys. Lett. A 171 (1992) 199.

[12] N. Marwan, N. Wessel, J. Kurths, Phys. Rev. E 66 (2) (2002)
026702.

[13] J.P. Zbilut, A. Giuliani, C.L. Webber Jr., Phys. Lett. A 246
(1998) 122.

structures, processes and impacts on the system Earthji4] N. Marwan, M. Thiel, N.R. Nowaczyk, Nonlinear Processes

and the Collaborative Research CenBeformation
Processes in the Andssipported by the German Re-
search Foundation. We gratefully acknowledge
M.H. Trauth and U. Schwarz for useful conversations
and discussions and U. Bahr for support of this work.
Further we would like to thank the NOAA-CIRES Cli-
mate Diagnostics Center for providing COADS data.

References

[1] H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring,
Rev. Mod. Phys. 65 (1993) 1331.

[2] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis,
Cambridge University Press, Cambridge, 1997.

[3] J. Kurths, H. Herzel, Physica D 25 (1987) 165.

[4] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman,
San Francisco, 1982.

Geophys. 9 (3/4) (2002) 325.

[15] F. Takens, Detecting strange attractors in turbulence, in: Lec-
ture Notes in Mathematics, Vol. 898, Springer, Berlin, 1981,
pp. 366-381.

[16] J.M. Choi, B.H. Bae, S.Y. Kim, Phys. Lett. A 263 (4-6) (1999)
299.

[17] E.N. Lorenz, J. Atmos. Sci. 20 (1963) 120.

[18] J.H. Argyris, G. Faust, M. Haase, An Exploration of Chaos,
North-Holland, Amsterdam, 1994.

[19] T. Schreiber, Phys. Rev. Lett. 85 (2) (2000) 461;
http://prola.aps.org/searchabstract/PRL/v85/i2/p461_1

[20] A. Schmitz, Phys. Rev. E 62 (5) (2000) 7508;
http://prola.aps.org/searchabstract/PRE/v62/i5/p7508_1

[21] M.H. Trauth, R.A. Alonso, K. Haselton, R. Hermanns,
M.R. Strecker, Earth Planet. Sci. Lett. 179 (2000) 243.

[22] A.R. Bianchi, C.E. Yafiez, Las precipitaciones en el noroeste
Argentino, Instituto Nacional de Tecnologia Agropecuaria,
Estacion Experimental Agropecuaria Salta, 1992.


http://prola.aps.org/searchabstract/PRL/v85/i2/p461_1
http://prola.aps.org/searchabstract/PRE/v62/i5/p7508_1




Appendix D

Comparing Modern and Pleistocene ENSO-like Influences
in NW Argentina Using Nonlinear Time Series Analysis
Methods

MARWAN, N., TRAUTH, M. H., VUILLE, M., KURTHS, J., Comparing modern
and Pleistocene ENSO-like influences in NW Argentina using nonlinear time
series analysis methods. Climate Dynamics, 2003, in press.

Dor: 10.1007/500382-003-0335-3






Climate Dynamics
(finally accepted: March 28, 2003)

Comparing modern and Pleistocene ENSO-like influences in NW Argentina using
nonlinear time series analysis methods

Norbert Marwan 1, Martin H. Trauth 2, Mathias Vuille2, Jiirgen Kurths?!

1 Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany
2 |nstitute of of Earth Sciences, University of Potsdam, Potsdam 14415, Germany
3 Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, USA

Received: date / Revised version: date

Abstract Higher variability in rainfall and river discharge of climate scenarios at times of high rock avalanche activity
could be of major importance in landslide generation in thehelps us to define threshold values for increased landsliding.
north-western Argentine Andes. Annual layered (varved) de-  About 30,000 “C years ago, multiple large rock
posits of a landslide dammed lake in the Santa Maria Basiravalanches with volumes in excess o 183 occurred in
(26°S, 66W) with an age of 30,008“C years provide an the arid to semiarid intra-andean basins of north-western Ar-
archive of precipitation variability during this time. The com- gentina (Strecker and Marret 1999; Hermanns and Strecker
parison of these data with present-day rainfall observationg999: Trauth and Strecker 1999). A potential mechanism that
tests the hypothesis that increased rainfall variability played:ould have caused this enhanced landsliding in such an envi-
amajor role in landslide generation. A potential cause of sucltonment is climate change. Increased humidity and/or higher
variability is the EI Nifo/ Southern Oscillation (ENSO). The inter- and intraannual rainfall variability results in higher river
causal link between ENSO and local rainfall is quantified by discharge and erosion in narrow valleys and therefore increa-
using a new method of nonlinear data analysis, the quantised destabilization of mountain fronts.
tative analysis of cross recurrence plots (CRP). This method The climatic conditions in NW Argentina are not well
seeks similarities in the dynamics of two different processesknown for the period at around 30,00 years ago. Marine
such as an ocean-atmosphere oscillation and local rainfalhng terrestrial records from tropical and subtropical South
Our analysis reveals significant similarities in the statistics ofamerica indeed suggest more humid conditions (the Minchin
both modern and palaeo-precipitation data. The similaritieq)eriod between 40,000 and 25,04C years ago, e. g. van der
in the data suggest that an ENSO-like influence on local rainiammen and Absy 1994; Ledru et al. 1996; Godfrey et al.
fall was present at around 30,08tC years ago. Increased 1997: Turcq et al. 1997) and a strong EniSouthern Os-
rainfall, which was inferred from a lake balance modeling in jjjation (ENSO) (e. g. Obedrisli et al. 1990; Beaufort et al.
a previous study, together with ENSO-like cyclicities could 2001). Various modeling studies have shown an impact of
?f'p to explain the clustering of landslides at around 30,00Qpjtal forcing on ENSO and its weakening during the ice
C years ago. ages (Clement et al. 1999; Liu et al. 2000). Thus EhNi~
events may be rare around 30,08C years ago (Clement
et al. 1999). Beaufort et al. (2001), however, inferred from
Coccolithophores production a significant occurence of the
ENSO for this period, and Tudhope et al. (2001) based on the
1 Introduction analysis of a_nnually banded corals con_cluded that ENSO has
been a persistent component of the climate system over the

. . _ . . _past 130 ka.
Climate is a major influential factor for mass movements in H the local sianal of the climatic ch in NW
high mountain regions. Increased humidity (Dethier and Re—A ogvevgr, t'IIe otca ﬁ'gn? Od Le c |.mat 'EC r:ljpgestmf
neau 1996) or increased variability in rainfall (Grosjean et al. rgentina Is still not wetl detinec. Laminated sediments from

1997; Keefer et al. 1998) can reduce thresholds for catasd former landslide dammed lake in the Santa Maria Basin

trophic landsliding. In order to estimate the influence of cli- (NbW tAtrr?entlne_l, 265 6t6)\IN) C(()jr_lt_aln V?IU?EIG mft_)rr;atlon d
mate in a given region, the climatic conditions during epi-a out the environmental conditions for the period aroun

- . : - 30,000'“C years ago (Trauth and Strecker 1999; Trauth et al.
sodes with enhanced landsliding are compared with pe”OdngOOO). Hydrologic modeling of this palaeo-lake indeed in-

without important mass movements. The precise definitior. A " . oo
dicates significantly wetter conditions during this time com-

Correspondence tdNorbert Marwan pared to the present (around 10 to 15 % higher precipitation,
e-mail:marwan@agnld.uni-potsdam.de Bookhagen et al. 2001). Linear spectral analysis of palaeo-




2 Norbert Marwan et al.

precipitation data derived from annual layered (varved) lakemoisture transport over the eastern slopes of the Andes and
sediments also suggest an ENSO-like influence on rainfalleads to a typically dry winter climate (less than 50 mm per
and consequently increased interannual rainfall variability inmonth).
river discharge and erosion (Trauth and Strecker 1999; Trauth  On interannual time scales, summer precipitation in the
et al. 2000). However, the results of such linear methods ar€entral Andes, is primarily related to changes in meridional
often ambiguous and not appropriate, since natural processésmroclinicity between tropical and subtropical latitudes,
are complex, exhibit nonstationarities and are mostly recordeghich in turn is a response to sea surface temperature anoma-
as short and noisy time series. In fact, data gained from sedies in the tropical Pacific (e. g. Vuille et al. 2000; Garreaud
imentation processes (as colour data) are nonstationary bynd Aceituno 2001; Garreaud et al. in press). The study re-
their origin and the relationship between climatic forcing andgion therefore shows a significant relationship with ENSO,
rainfall is not expected to be linear. Linear methods are usufeaturing a weakened westerly flow with a significantly en-
ally unsuitable to investigate natural complex data. In addi-hanced easterly moisture transport during LaaN§ummers
tion, these approaches do not provide any information abousind strengthened westerly flow with a significantly subdued
a change in the climate dynamics, e. g. the sign of precipitaeasterly moisture transport during EInd’summers. As a re-
tion changes related to ENSO-like oscillations. sult, the rainy season is much more active during LaaNi~
The aim of our work is to test the hypothesis that an en-episodes and less active during Elndiepisodes. These
hanced ENSO-like influence on local rainfall caused a tempoENSO related atmospheric circulation anomalies are also ev-
ral landslide cluster 30,008#C years ago. For this purpose, identin radiosonde data to the east of the Central Andes over
we first try to identify ENSO-like patterns in present-day pre-NW Argentina (Salta), featuring enhanced southeasterly
cipitation data and infer causal links between this ocean-atmd@northwesterly) flow and increased (decreased) specific hu-
sphere oscillation and local rainfall. Secondly, we search fomidity levels in the lower and mid-troposphere during La
similar influences in palaeo-precipitation data reconstructedNifia (El Nifio) summers (Vuille 1999). The notion that this
from 30,000“C year old lake sediments. This comparison ENSO influence indeed extends beyond just the Central An-
is carried out using a new method of nonlinear data analydes is further supported by several recent studies, which in-
sis, thecross recurrence plots (CRPWhich can be applied dicate that precipitation anomalies in this part of the Andes
to short and nonstationary complex data (Marwan and Kurthsend to coincide with anomalies of the same sign over SE
2002). This procedure traces similarities and differences irBolivia and NW Argentina (e. g. Aceituno and Montecinos
several measures of complexity in both modern and past raint997; Garreaud 1999). Bianchi andnéx (1992) also re-
fall data. Significant occurrences of the ENSO-rainfall tele-port a weak but significant tendency toward less rain dur-
connection together with increased rainfall could help to ex-ing El Nifio years, based on a high-density network of 380
plain enhanced landsliding 30,086C years ago in NW Ar-  weather stations. Trauth et al. (2000) provide a detailed statis-
gentina where no major mass movements occur today. tical analysis on the same data set showing that this tendency
is very obvious but spatially and temporally highly variable.
As indicated in Fig. 1 for the representative EInNigvent
2 Present-day Climatic Conditions 1965/66, precipitation can be decreased up to 80 % with re-
spect to the long-term average in rainfall, with a more signif-
Summertime climate and atmospheric circulation over Nwicant reduction in the northern part of the study area. A com-
Argentina is largely governed by the South American mon-Posite analysis of the monthly summer precipitation (DJFM)
soon system (e. g. Zhou and Lau 1998), featuring heavy predifference between El W5 and La Niia summers between
cipitation, an upper-air anticyclone (Bolivian High) and a low- 1979 and 1999 based on CMAP satellite-derived precipita-
level trough (Chaco low). Approximately 80% of the an- tion data (Xie and Arkin 1997) confirms this notion (Fig. 2).
nual precipitation amount falls within the summer monthsAlthough weak, the tendency toward less precipitation dur-
November —February (Bianchi and ez 1992), associated ing El Nifio and more precipitation during La iNi"episodes
with southward moisture transport to the east of the Andeds evident even in this low-resolution gridded data. Similar
through the Andean low-level jet (e.g. Nagg:Paegele and to the pattern in Fig. 1, the ENSO signal is reversed a few
Mo 1997). The intra-andean basins and valleys, separatedegrees further south, where summer precipitation becomes
from this low-level moisture flux through the north-south run- less dominant.
ning eastern Andean ridge, are arid and receive less than
200 mmyr?!, whereas the regions to the east of this oro-
graphic barrier receive more than 1500 mm¥yBianchiand 3 Methods
Yafiez 1992).
Due to the seasonal change in the tropospheric temperat is difficult to compare rainfall proxies from 30,00¢C
ture gradient between low and mid-latitudes, the subtropicalear old lake sediments with present precipitation data. The
westerly jet extends further north during the winter months,process recording weather and climate in palaeo-archives is
reaching its northernmost position around27The resulting complex and so far not very well understood (Saltzman 1990;
wintertime mean westerly flow, which prevails over the studyBradley 1999). Because of various signal distortions in both
region in the mid- and upper troposphere, hinders regionalime and frequency domain, the use of linear data analysis
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Fig. 1 Study area in the Santa Maria Basin with the locality of an- and La Niia periods (EI Nid — La Niia) for December — March
nual layered lake deposits in the locality El Paso, the relative pre-bas_ed on CPC merged analysis of precipitation (CMA_P, Xie and
cipitation anomaly during the EI N&' 1965/66 compared to mean ATKin 1997) between 1979 and 1999. Contour interva & —2,
annual precipitation (annual precipitation as a mean from July to~1 —0-5, 05, 1, 2, 4 mm day*, regions with difference> 0.5
June; data from Bianchi and NeZ 1992) and the prevailing wind (< —0.5) shaded in light (dark) gray. An EI N&'(La Nifia) event

directions during January (black arrows; wind directions from Pro-is defined as a phase of at least six consecutive months in which the
haska 1976). 5-month running mean of SSTA in the NINO3.4 region exceeds (or

remains below) &°C (—0.5°C). The reference period for the SSTA
is 1961-90.

3.1 Cross recurrence plots (CRP)

methods reaches its limits. The complexity of natural pro-

cesses suggests the application of nonlinear methods inste#a important aspect of climate changes involves nonlinear
for the analysis and comparison of such complex processefteractions among many components of the earth’s environ-
Most of the nonlinear standard techniques, such as fractal dimental system (e. g. Palmer 1999). These components include
mensions or Lyapunov exponents, cannot be estimated fdahe oceans, land, lakes and continental ice sheets, and in-
such data (Kantz and Schreiber 1997). Therefore, we haveolve physical, biological, and chemical processes. Many of
tried to quantify cross recurrence plots of present-day andhe techniques used to diagnose climatic variability such as
palaeo-data. This reveals a suite of complexity measurementsourier analysis, empirical orthogonal functions or singular
which give hints to identify similar patterns in present-day value decomposition are formulated using methods taken
and palaeo-data. This comparison first tests the hypothesfsom linear analysis. However, while using these techniques
that the signal extracted from the lake sediments is an apit is difficult to analyze the nonlinear character of the earth’s
propriate measure for palaeo-precipitation. Secondly, it helpglimate system. In the last two decades, a great variety of
to reconstruct the variability in annual rainfall as comparednonlinear techniques have been developed to analyse data
to the present. Both results can then be used to test the hyf complex processes. Most popular are methods to estimate
pothesis that increased interannual variability in climate carfractal dimensions or Lyapunov exponents (e. g. Mandelbrot
explain enhanced landslide activity 30,00C years ago. 1982; Wolf et al. 1985; Kurths and Herzel 1987; Kantz and
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Schreiber 1997). However, a number of pitfalls are possible The CRP is a two-dimension&l x N array of points
due to the uncritical use of these methods on natural datayhereN is the number of embedding vectors obtained from
which are typically nonstationary and noisy. Furthermore, wethe delay coordinates of the input signal. The values of the
cannot expect low dimensions in highly complex natural pro-CRP areone (black points) if trajectories lie close to each
cesses. Therefore, we have modified and applied the nonlirether (recurrence points), whereas valueszefo (white
ear data analysis method of cross recurrence plots, which wagsoints) document rather large distances between two trajec-
recently introduced by the extension of recurrence plots (Zbitories. From the occurrence of lines in the CRP parallel to
lut et al. 1998; Marwan et al. 2002), for detecting similarities the diagonal in the recurrence plot it can be seen how fast
and differences in the ENSO influence in present-day ancheighbouring trajectories diverge in the phase space. Recur-
past rainfall data. In order to quantify such similarities by rent data in a system would create diagonal lines in a dis-
using CRPs, new measures of complexity were introducedtancet from the main diagonal in such a plot comparing both
Measures of complexity were developed in order to quanphase-space embeddings with respect to the time tdtayg
tify the complexity of processes; the simplest measure is thémportant to note that an additional CRP with opposite signed
entropy, which distinguishs between noisy and periodicallysecond time serieSR;"; = ©(e — [|x; +Y;||) allows to distin-
processes. Here we use an approach which uses the geometish positive and negative relations.
rical structures which are contained in CRPs. This new tech- Visual inspection of CRPs already reveals valuable in-
nique is particularly efficient for the analysis of rather non- formation about the relationship between two complex pro-
stationary, short and noisy data and was successfully appliecesses. However, a better understanding of causal links be-
to prototypical model systems with nonlinear interrelationstween both processes demands a more quantitative exami-
(Marwan and Kurths 2002). Thus, the CRP is an appropriateation of the CRPs. Therefore, we introduce the following
method for time series analysis of climate and palaeo-climatéwo statistical measures of complexity (Marwan and Kurths
data. 2002):

The basic idea of this approach is to compare the dynam- therecurrence rate
ics of two processes which are both recorded in a single time Nei
series. Following Taken’s embedding theorem (Takens 1981), RR(t) = i Z (CR* i —CR; .+i) , (3)
the dynamics of a process with state parameters (i.en ~ N—i =1 b b
differential equations), which is, however, measured by only .
one time seriesi(t) = u; with lengthN and a sampling time and theaveraged diagonal length

At (i.e.t = iAt), can be appropriately presented in its recon- le_fli_ [P, t) =P (1,1)]
structed phase space of a dimensioritheoretically when L(t) = =5 5 0 PO (4)
m > 2m+ 1). Such a reconstruction can be formed by using Z|:|min[ (1,) =P=(1,1)]

the time delay method (embedding), where for each compogherel i, is a predefined minimal length of a diagonal line
nent of the state vector a value of the time series after a PrésegmentP=(, t) is the histogram of the diagonal line lengths
defined delay (time delay) is choosen: in CR™ at a distancé from the main diagonal (i. e. the time
Xi = (Uiy Uity ooy Ui gm1y) » 1= 120N, 1) delayt_between th_e two phase space vegtors)taﬂdAt. The
RR() is the density of adjacent states, i. e. of the recurrence

The dimensiomm of such a reconstructed state or phasepoints in a CRP diagonaRR(t) therefore measures the prob-
space is called embedding dimension. The time evolution obility of similar states in both processes after a delay time
the state vectors forms a trajectofy which runs through all  High densities of recurrence points in a diagonal cause high
possible states at tinte= i At and, thus, present the dynamics values ofRR which is typical for processes with a similar
of the process. behaviour in the phase space.

The similarity in the behaviour of both processes in this  Strongly fluctuating data cause short or absent diagonals
reconstructed phase space can be examined by using the CRfthe CRP, whereas data from deterministic processes pro-
which visualizes the distance between segments of their phasiice longer diagonals. If two deterministic processes have the
space trajectorieg andy; of the embedded time series (Mar- same or similar phase-space behaviour, i. e. the phase-space
wan and Kurths 2002) trajectory reaches the same regions of the phase space dur-

+ _ o . ing certain times, then the number of longer diagonals will

CR =0O(e—[xi—yjll), i,j=1...N, 2) increase and the amount of short diagonals decrease. The av-
wheree is a predefined cut-off distancé, || is the norm  erage diagonal length measures the epoch length (i. e. the
(e.g. the Euclidean norm) ar@(x) is the Heaviside func- time span) of significant similarities in the behaviour of both
tion. Depending on the type of the applicati@rcan have a  processes. The higher the coincidence of both processes, the
fixed value or can vary for eadhin such a way that a pre- larger the length of these diagonals.
defined number of neighbours occur within a certain radius  Consequently, high values BfRandL correspond to fre-
€ (Eckmann et al. 1987; Marwan et al. 2002). This results inquent and longer periods of similar behaviour of the pro-
a constant density of recurrence points in each column of theesses as recorded in the time series data. Therefore, these
CRP and is particularly useful in the analysis of complex pro-parameters are appropriate quantitative measures for the sim-
cesses with differences in the variability of the amplitudes. ilarities between both processes. However, extrema at longer
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delayd do not necessarily correspond with high correlations.ing the summer rainy season, whereas Tucuman is character-
Future work will concentrate on the theoretical and more de4ized by southerly and south-westerly winds (Prohaska 1976).
tailed investigation of the interrelations between the struc-The Southern Oscillation Index (SOI) is used as a measure
tures in CRPs. for the ENSO variability between the years 1884 and 1990
We have proposed a statistical evaluation of the quantita¢Fig. 3 A, based on COADS data). This index is the normal-
tive measures of the CRP with an ensemble of a large amourzed difference between the sea level air pressure in Tahiti and
of surrogate data. Darwin. Extreme negative values represent EhdNEvents
The assumption for the surrogate data is that the considand extreme positive values represent Laaévents (Ro-
ered processes are linearly independent and do not have apglewski and Halpert 1987). In our analysis, we use monthly
similar dynamics. These surrogates should reveal some fealata, i. e. twelve data points per year in order to avoid loos-
tures like in our original data but also features caused by théng valuable intraannual information. Moreover, longer data
randomness of a possible correlation (stochastic processes)ectors improve the significance of the CRP measures, thus
Linear correlated noise is a paradigmatic example for suchihe use of annual data would significantly reduce the value
processes (Kantz and Schreiber 1997). We calculate a surrof our results. The potential distortion of the final result by
gate time series based on this class of processes with the fatlifferences in the causal linkage between ENSO and rainfall
lowing recursive function, a autoregressive process of ordeover the year, i. e. between dry and wet season, is believed to
p, be of minor importance since the absolute values of precipi-
. P A% o+ bE tation during the dry season are low and hence the contribu-
ne i; pan—p m tion to the analysis is small. The rainfall variability during the
dry season is not significantly different from white noise and

V\{hereE Is white noise angd are coefficients which de- disappears after low-pass filtering preceding the actual time
termine the auto-correlation of the system and allow to adapgeries analysis

this stochastic system to our natural processes. We fit the
model to the precipitation series of the station Tucuman. Then
we perform the CRP analysis using the SOI data and the
ensemble of, e.g. 1000 realizations of precipitation series
produced by the AR model. Using the distributions of Rfe 4
andL measures we can estimate their empirical confidenct
bounds (we will use thed®bounds which approximately cor- 25
respond with the 95% confidence level). 5 ol
With these confidence bounds we can evaluate the ok ©
tained measures of CRP and the relations of the natural prc ~ _,|
cesses. Since the surrogates are from a stationary system a
th_e ngtural data are nonstationary, we have furth_er applie T Joo0 1030 1990 1950 1960 1970 1980 1990
this kind of evaluation to more stationary segments in the nat Time [year]
ural data. We got the same results. This kind of surrogatesis 400 ‘ ‘ ‘
special realization, which is prototypical for linear stochastic & B
processes, and there are a lot of other possibilities to constru% 3007

Ke)
surrogates. 3 200}
S
g 100}
3.2 Comparison of modern and palaeo-precipitation o
il 0
variability 1910 1920 1930 1940 1950 1960 1970 1980 1990

Time [year]

In order to test the new method on precipitation data, we first 4
compute the CRP for rainfall stations with well established
and clear ENSO influence. We use monthly precipitation dat¢
from the cities of Buenos Aires (BAl) and Caracas (CAR)
from the WMO data set (Hoffmann 1975). For the assess:
ment of the modern ENSO influence on local rainfall in NW
Argentina, we analyze monthly precipitation data from three > ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
stations: San Salvador de Jujuy (JUY), Salta (SAL) and Sar 1910 1920 1930 1940 1950 1960 1970 1980 1990
Miguel de Tucuman (TUC; Figs. 1 and 3 B). These stations Time [year]

in the capitals of the provinces Jujuy, Salta and Tucuman progig. 3 Smoothed ando-normalized time series of the South-
vide the longest time series from this area and are locatedrn Oscillation Index (A), monthly precipitation data of Salta
on a north-south transect. Moreover, these locations are inB) and its smoothed and-normalized time series (C). SOI
fluenced by different local winds; Jujuy and Salta mainly re-based on COADS data from the NOAA Live Access Server
ceive north-easterly and easterly moisture-bearing winds durthttp://ferret.wrc.noaa.gov).

Precipitation [o]



http://ferret.wrc.noaa.gov).

6 Norbert Marwan et al.

The CRP analysis of the present-day ENSO and precip- The colour intensity of a section of the sediments pro-
itation data reveals characteristic patterns that can now béle with a length of 160 varves was gained by scanning high
traced in palaeo-precipitation data. The palaeo-precipitatiomuality photographs. After digital pre-processing, a time se-
variability is inferred from varved lake sediments sampledries of red intensity values on a length scale was obtained. We
at the locationEl Paso (EP; 26.0S, 65.8W) in the Santa transform these data to a time scale assuming an annual re-
Maria Basin in NW Argentina (Figs. 1 and 4). These sedi- currence of the diatomaceous layers. Within single varves 12
ments were deposited in a landslide dammed lake 3¢D0  subannual data points are computed by logarithmic interpola-
years ago (Trauth and Strecker 1999; Hermanns and Strecké&on of the data taking into account the exponential decrease
1999). Because of the internal structure of the deposits wittof the sedimentation rate during the annual cycle (Fig. 5).
intra-varved changing of diatom species and the cyclic recurThe power spectrum estimate of the red colour intensity re-
rence of paired diatomite and clastic layers, these laminationgeals significant peaks within the ENSO frequency band of 2
are varves (Trauth and Strecker 1999). The annual cycle witho 4 years, suggesting an ENSO-like influence (Trauth et al.
wet summers and dry winters caused significant changes iB000). Because of the nonstationarity of these data (the sedi-
the lake sedimentation. During the rainy season mainly ochementation process in a lake is not stationary, resulting in non-
coloured silty sediments were deposited; during the subsestationary proxy parameters for the in-lake processes; mean
quent dry season a thin white layer consisting of the skeleof the first half of the time series is3D, of the second half is
tons of silica algae (diatoms) was deposited. Due to its white—0.32; standard deviation of the first half of the time series
colour, the diatomaceous layers can be used to identify singles 1.13, of the second half is.®1), linear correlation analysis
years in these sediments. Recurring intense red colouratiois unsuitable. Therefore, we apply the CRP analysis to these
of the silty part of the annual layers is sourced from reworkeddata.
older sediments which are eroded and deposited only during
extreme rainfall events. Therefore, the intensity of red colour

in the varved deposits can be interpreted as a proxy for pre 250 A
cipitation variation at El Paso site (Trauth and Strecker 1999 E 200l
Trauth et al. 2000). The more intense the red colour the highe 2
was the precipitation during the rainy season. & 150
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Fig. 5 Red intensity values of the lake sediments of site EP160 on
(A) a length scale and on (B) a time scale and after smoothing and
normalization; the unit of raw data is one bit, the unit of transformed
and smoothed data is the standard deviation

4 Results of Nonlinear Data Analysis

First, all time series are normalized and low-pass filtered us-
= ing a 7th-order Butterworth filter with a cutoff frequency of
Fig. 4 Detail of varved lake sediments from the El Paso site in the 1/18 month' in order to remove the predominant annual cy-
Santa Maria Basin with cyclic occurrence of dark red colourationscle from the data (Figs. 3C and 5). Butterworth filters are
recording more precipitation and sediment flux with ENSO-like pe- from the infinite-duration impulse response type (IR filters)
riodicities (Trauth and Strecker 1999). The overlayed curve shows @nd have a monotonically decreasing response with respect
representative red colour intensity transect of the deposits. to frequency (Elliott 1987).
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Fig. 6 Cross recurrence plot of SOI vs. precipitation data from the Fig. 7 Cross recurrence plot of SOI vs. the best matching section of
city of Salta (SAL). Thex-axis shows the time along the phase space palaeo-precipitation (EP160). Scaling as in Fig. 6. ¥axis shows
trajectory of the SOI and thg-axis that of SAL. Black points rep-  the time along the phase space trajectory of the SOI ang-thés
resent the occurrence of similar states in both processes. Diagongiat of EP160.

lines correspond with epochs of similar dynamics in both processes.

The amount and length of these lines can be used as measures of the

similarity of both processes.

cuss the CRP of Salta precipitation (data series SAL) vs. the

Next, the filtered rainfall data and the Southern Oscilla- Southern Oscillation Index (SOI) and the CRP of red colour
tion Index (SOI) are embedded into a phase space usa @ intensity of varves (data series EP160) vs. SOI. Xais
andt = 9. The method of nonlinear time series analysis us-represents time along the phase space trajectory of the SOI,
ing delay time embedding relies on a choice of good delaywhereas thg-axis represents the time along the phase space
time and the embedding dimension. Proper values for thes&ajectory of SAL or EP160, respectively. The CRP of SAL
parameters are determined using the methods of false nears. SOI exhibits longer diagonal lines in two to four year in-
est neighbours and mutual information (Kantz and Schreibetervals, which matches the same frequency band obtained by
1997). The quantitative analysis of cross recurrence plots ishe power spectral analysis (Fig. 6). This indicates that some
then applied to pairs of time series, local precipitation recordsequences of the phase space trajectory of the SOI recur in
and the Southern Oscillation Index (SOI). The CRPs are comsequences of the phase space trajectory of SAL after relocat-
puted using a fixed amount of nearest neighbours with  ing by the time of two to four years. Vertical white bands in
15%. Since the statistics of CRPs are sensitive to changes ithe CRP represent less frequent states in SOI, such as hori-
the cutoff distance, we have run sensitivity tests in order tozontal white bands suggest for SAL. The latter occurs with
find the optimum value of. The value of 15 % appears to be intervals of more than ten years. The CRP between EP160
the best choice receiving robust and precise results. and SOI shows similar characteristics as the CRP described

The CRPs of all pairs of time series show similar features.above (Fig. 7). Longer diagonal lines have spacings of about
The significant similarities between CRPs obtained fromtwo to four years. White bands occur at time scales of more
modern (Fig. 6) and palaeo-precipitation data (Fig. 7) indi-than ten years. Some linkages in both CRPs are obvious by
cate that the red colour intensity records from the varved lakevisual inspection. Next, the quantitative analysis of the CRPs
sediment do reflect rainfall in NW Argentina. First we dis- is performed in order to study statistically these relations and
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CAR BAI which suggests a significant link between Jujuy rainfall and
04 04 ENSO (Fig. 9C, G). The measures for the analysis SAL vs.
SOl show smaller maxima for a delay of about zero and min-
ima after a lag of about 8 — 12 months. We therefore infer a
weaker linkage between Salta rainfall and ENSO (Fig. 9B, F;
the disrupted minima in thie parameter at around ten months
is due to the short data length and a resulting nonstationarity
in the CRP). The measures for SAL and JUY exceed the 2
04 04 bounds.
-10 L‘;g [Monﬁl’g] 20 -10 ng [Monﬁl’g] 20 The 30,000'C year old precipitation data are not sim-
ply comparable with present-day data, because there is no
15 15 information available about how to synchronize the rainfall
ol € ol P records with modern climate indices. Therefore we seek the
time window in these data showing the highest coincidence in
the dynamics using maximum values RIRandL as the key
criterion. Although the observed coincidence is not very high,
it yields the time section in the palaeo-precipitation record
EP160 which can be best correlated with modern data. In
our palaeo-data EP160 we find such a section represented
-10 0 10 20 -10 0 10 20 by maximum and minima values f&tRandL for delays of
Lag [Months] Lag [Months] about zero and ten months, similar to those found for JUY

Fig. 8 RRandL measures of the cross recurrence plots between SOand SAL (Fig. 9 D, H). TheRRandL measures exceed also
and precipitation in Caracas (A, C) and Buenos Aires (B, D) with athe 25-bounds.
well-established and clear ENSO influence. Extreme values reveal Tq yse the minima at lags around 8 — 12 months for cli-

high similarity between the dynamics of the rainfall and the ENSO. matological interpretations is difficult and might lead to er-
roneous conclusions, but these characteristic patterns of pos-
itive and negative interrelations can be used to compare the

to allocate the predefined causality patterns to certain |0ca"present-day and palaeo-data. The positive and negative inter-

ties. relations have the same time delay between 10 and 12 months

In order to calculate the measures of compleRfgand  in the present-day and the palaeo-data.

L between the rainfall data and SOI, we used a delay time in

the range between12 and+22 months, i. e. these measures

are determined in a small corridor above and below the mai%s Discussion

diagonal. We are interested in the extrema and in the time

lag where they occur and we get the following results for thewe applied the method of cross recurrence plots (CRPSs) to
various pairs of records. From an ensemble 00 realiza-  modern and palaeo-precipitation data in order to compare the
tions of a 5th-order AR-model we calculate the-Bounds of  magnitude and causes of rainfall variability in the NW Argen-
their distributions folRRandL. The coefficients for the AR- tine Andes today and during the time of enhanced landslid-
model are adapted to the Tucuman precipitation (we also usegg at around 30,008'C years ago. CRPs are able to look for

AR-models adapted to the rainfall data of the other stationsponlinear interrelations between two processes. The major re-
which revealed similar results). The order of the AR-modelgy|t from this analysis is the significant similarity between

is determined with the Akaike’s Information Criterion and a the Complex dynamics of modern rainfall and the pa'aeo_

Criterion, which assesses whether the residues follow Whit%recipitation as recorded in the red Colour intensity record
noise (Schlittgen and Streitberg 1999). from the lake sediments in the location El Paso. The distances

The CRP measures between CAR and SOI reveal extremigetween longer diagonal lines in the CRP of both records are
positive values and between BAI and SOI extreme negativebout two to four years, the approximate time of recurrence
values, which reflect the strong influence of ENSO in theseof extreme ENSO phases today. The first implication of this
areas (Fig. 8). The parameteRof the CRPs between TUC result is that the red colour intensity of the sediments is in-
and SOI has small negative values, which do not exceed thdeed a good proxy for the rainfall intensity 30,080C ago.
20-bounds, and does not show preferences for a distinct lagrhis result is in line with the observations of Trauth et al.
The parametel has also small values, but it has rather small (2000) suggesting an enhanced erosion of red-coloured clas-
maxima and minima at delays efl, 4 and 8 months. These tic sediments during heavy rainfall events today whereas pre-
results indicate that the precipitation in Tucuman is notcipitation usually only reaches the elevated areas with mainly
strongly influenced by ENSO. If there is a weak influence,greenish low-grade metamorphic rocks exposed. This effect
the rainfall would increase during El No“(Fig. 9 A, E). The  causes predominant greenish to buff-coloured clays deposited
analysis of JUY and SOl reveals clear positive values aroundh the former lake basin (Trauth and Strecker 1999; Trauth
a lag of zero and negative values after about 8 — 12 monthst al. 2000 2003).
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Fig. 9 RRandL measures of the cross recurrence plots between SOI and precipitation in Tucuman (A, E), Salta (B, F), Jujuy (C, G) and
palaeo-precipitation (D, H). Extreme values reveal high similarity between the dynamics of the rainfall and the ENSO. The dash-dotted lines
are the empirical @bounds from the distributions of an ensemble of data based on a 5th-order AR-model.

Since our analysis of modern data reveals a strong relaat around 30,008“C years ago (roughly corresponding to
tion between local rainfall in the northern part of the study 34,000 cal. years BP), which corresponds with the results of
area (Jujuy) and ENSO, we interpret this similarity as an in-the investigation of Coccolithophores production (Beaufort
dication of a strong ENSO-like influence in the Santa Mariaet al. 2001). A younger landslide cluster in the same region
Basin at around 30,000 years. In contrast, there is no signifat around 5003“C (corresponding to 5800 cal. years BP)
icant linkage between the modern rainfall in Tucuman andwas also explained by a stronger ENSO influence at that time
ENSO. This result could indicate that ENSO does not influ-(Trauth et al. 2000; palaeo-ENSO evidence from Keefer et al.
ence precipitation in the southern part of the study area or thi4998; Sandweiss et al. 2001; Haug et al. 2001). The spac-
influence is rather diffuse or changing in time. ing between both landslide clusters is around 28,000 years.

The CRP between the SOI and the rainfall in Jujuy andAlthough two landslide clusters do not allow to infer a sys-
Salta reveals a positive relation without any large delay, i. etematic recurrence of such events, we believe that there is
the occurrence of an El N at the end of a year would cause some evidence that these events correspond to the periods of
decreased rainfall in the rainy season from November to Jara strong ENSO-like variation as reported from deep-sea sed-
uary and the occurrence of a Larldiwould cause increased iments off-shore Peru (Obeathsli et al. 1990), in the Indo-
rainfall during this time of the year. The opposite responsePacific Ocean (Beaufort et al. 2001) and New Guinea corals
after a delay of 8 — 12 months is not easy to interpret, be{Tudhope et al. 2001). These long-term ENSO records sug-
cause we do not know which mechanism actually caused thigest a mixed precession-glacial forcing on ENSO resulting in
linkage. The time span between the identified maxima andgignificant 23- and 30-kyr cyclicities, which confirms model
minima is about one year and could be explained by the factesults and recently inferred relations between ENSO vari-
that La Nifa events often follow El Mi6 events. The smooth ability and insolation (Clement et al. 1999; Liu et al. 2000;
shape of the CRP measure curves are artefacts caused Rjttenour et al. 2000).
low-pass filtering of the time series. The measures of CRP
of Tucuman precipitation and SOI show non-significant val-
ues without any characteristic delays. The analysis of varve
data reveals a significant positive relation between SOI and
palaeo-precipitation at the location El Paso. Similar to the In the semiarid basins of the NW Argentine Andes, the
modern situation, the CRP shows a significant negative relaENSO-like variation could have caused significant fluctua-
tion with SOI after a delay of about ten months. Both interre-tions in local rainfall at around 30,000C years similar to
lations are rather similar to those of ENSO-JUY and ENSO-the modern conditions. Together with generally higher mois-
SAL. ture levels as indicated by lake balance modeling results, this

The similarities between the time series of the modernmechanism could help to explain enhanced landsliding at
rainfall data and the palaeo-precipitation record from the lakearound 30,000 and 5,08¢C years ago in the semiarid basins
sediments suggests that an ENSO-like oscillation was activef the Central Andes.
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6 Conclusions Elliott DF (1987) Digital Signal Processing. Academic Press,
San Diego.

The quantitative analysis of cross recurrence plots has regarreaud R, Aceituno P (2001) Interannual rainfall variabil-

vealed similarities in the evolution of the phase space tra- ity over the South American Altiplano. J Clim 14: 2779—

jectory of climate indices and present-day and past rainfall. 2789

In comparison to the usually less variable climate during iceGarreaud R, Vuille M, Clement A (in press) The cli-

ages, our result suggests an enhanced impact of ENSO-like mate of the Altiplano: Observed current conditions and

conditions on local climate in the Santa Maria Basin 30,000 mechanisms of past changes. Palaeogeogr Palaeoclimatol

14C years ago associated with a strong inter- and intraannual Palaeoecol DOI 10. 1016/S0031-0182(03)00269-4

variability of rainfall and an intensification of moisture trans- Garreaud RD (1999) Multi-scale analysis of the summertime

port. A more variable climate due to an enhanced ENSO-like precipitation over the Central Andes. Mon Weather Rev

impact could have raised the risk of landsliding in this re- 127:901-921

gion and could help to explain enhanced landslide activity aiGodfrey L, Lowenstein TK, Li J, Luoand S, Ku T-L, Alonso

around 30,008%C years ago. RN, Jordan, TE (1997) Registro Continuo del Pleistocene
Tardio Basado en un Testigo de Halita del Salar de Hombre
Muerto, Argentina. In: VIII Congreso Geologico Chileno.

7 Acknowledgments Vol 1. pp 332-336

. . . Grosjean M, Cartajena |, Messerli B (1997) Mid-Holocene
This work is part of the Collaborative Research Center 267 Climate and Culture Change in the Atacama Desert,

Deformation Processes in the Andasd the Priority Pro- — \oinern Chile. Quaternary Res 48: 239-246 DO
grammeGeomagnetic variations: Spatio-temporal structures,

di A th tem E ted by th 10.1006/qres.1997.1917
processes and impacts on the system Esmiported by the Haug GH, Hughen KA, Sigman DM, Peterson LGoR'U

Se;?ﬁnaRezﬁZr&hT?gﬂg?t'og;c \Il\é%r?r:te;tj_l;yn a;l:]réo&/ylidge (2001) Southward migration of the intertropical conver-
' warz - usetu versations ISCUS- gence zone through the Holocene. Science 293: 1304—

sions and U. Bahr and M. Strecker for support of this work. 1308
El_thher \t/ye V(V:OUI? I|If<e to th%nk tg%xgéA'%lFéfﬂigém?te Hermanns RL, Strecker MR (1999) Structural and litho-
lagnostics Lentertor providing an ata. logical controls on large Quaternary rock avalanches

(sturzstroms) in arid northwestern Argentina. GSA Bul-
letin 111: 934-948
Hoffmann JAJ (1975) Climate Atlas of South America —
Aceituno P, Montecinos A (1997) Patterns of convective Maps of Mean Temperature and Precipitation. Unesco Car-
cloudiness in South America during austral summer from tographia, WMO
OLR pentads. In: Preprints Fifth Int. Conf. on South- KantzH, Schreiber T (1997) Nonlinear Time Series Analysis.

ern Hemisphere Meteorology and Oceanography, Pretoria, University Press, Cambridge _
South Africa. Amer Meteor Soc, pp 328-329 Keefer DK, de France SD, Moseley ME, Richardsonlll JB,

Beaufort L, de Garidel-Thoron T, Mix AC, Pisias NG (2001)  Satterlee DR, Day-Lewis AO (1998) Early Maritime Econ-
ENSO-like Forcing on Oceanic Primary Production Dur- Omy and EI Nio Events at Quebrada Tacahuay, Peru. Sci-
ing the Late Pleistocene. Science 293: 2440-2444 ence 281: 1833-1835

Bianchi AR, Yafez CE (1992) Las precipitaciones en el Kurths J, Herzel H (1987) An attractor in a solar time
noroeste Argentino. Instituto Nacional de Tecnologia Series. Physica D 25: 165-172 DOl 10.1016/0167-
Agropecuaria, Estacion Experimental Agropecuaria Salta 2789(87)90099-6

Bookhagen B, Haselton K, Trauth MH (2001) Hydrological Leédru MP, Braga PIS, Souts™F, Fournier M, Martin L,
modelling of a Pleistocene landslide-dammed lake in the Suguio K, Turcq B (1996) The last 50,000 years in the
Santa Maria Basin, NW Argentina. Palaeogeogr Palaeo- Neotropics, Southern Brazil: evolution of vegetation and
climatol Palaeoecol 169: 113-127 DOI 10.1016/S0031- Climate. Palaeogeogr Palaeoclimatol Palaeoecol 123: 239-
0182(01)00221-8 257 DOI 10.1016/0031-0182(96)00105-8

Bradley RS (1999) Paleoclimatology — Reconstructing Cli- Lit Z, Kutzbach J, Wu L (2000) Modeling climatic shift of
mates of the Quaternary. Vol 64 of International Geo- El Niho variability in the Holocene. Geophys Res Lett 27:
physics Series. Academic Press, San Diego 2265-2268

Clement AC, Seager R, Cane MA (1999) Orbital controls onMandelbrot BB (1982) The fractal geometry of nature. Free-
the EI Nifio/Southern Oscillation and the tropical climate. ~Man, San Francisco
Paleoceanography 14: 441-456 Marwan N, Kurths J (2002) Nonlinear analysis of bivariate

Dethier DP, Reneau SL (1996) Lacustrine chronology links data with cross recurrence plots. Phys Lett A 302 (5-6):
late Pleistocene climate change and mass movement in 299-307 DOI'10.1016/S0375-9601(02)01170-2
northern New Mexico. Geology 24: 539-542 Marwan N, Thiel M, Nowaczyk NR (2002) Cross Recur-

Eckmann J-P, Kamphorst SO, Ruelle D (1987) Recurrence fénce Plot Based Synchronization of Time Series. Nonlin-
Plots of Dynamical Systems. Europhys Lett 5: 973-977  €ar Proc Geoph 9 (3/4): 325-331

References



Comparing modern and Pleistocene ENSO-like influences 11

Nogués-Paegele J, Mo KC (1997) Alternating wet and River, Central Brazil. Quaternary Res 47: 284-294 DOI
dry conditions over South America during summer. Mon 10.1006/qres.1997.1880
Weather Rev 125: 279-291 van der Hammen T, Absy ML (1994) Amazonia during the
Oberhansli H, Heinze P, Diester-Haass L, Wefer G (1990) last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:
Upwelling off Peru during the last 430,000 yr and its re- 247-261
lationship to the bottom-water environment, as deducedvuille M (1999) Atmospheric circulation over the Bo-
from coarse grain-size distributions and analyses of ben- livian Altiplano during dry and wet periods and
thic foraminifers at holes 679D, 680B, and 681B, LEG extreme phases of the Southern Oscillation. Int J
112. In: Suess E, von Huene R (Eds.), Proceedings of the Climatol 19: 1579-1600 DOl 10.1002/(SICI)1097-
Ocean Drilling Program. Scientific Results. Vol 112. pp  0088(19991130)19:141579::AID-JOC44%3.0.CO;2-N

369-382 Vuille M, Bradley RS, Keimig F (2000) Interannual climate
Palmer TN (1999) A nonlinear dynamical perspective on cli- variability in the Central Andes and its relation to tropical
mate prediction. J Clim 12: 575-591 Pacific and Atlantic forcing. J Geophys Res 105: 12447—-

Prohaska FJ (1976) The climate of Argentina, Paraguay and 12460
Urugay. Vol 12 of World Survey of Climatlogy. Elsevier, Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Deter-

Amsterdam, Oxford, New York, pp 13-73 mining Lyapunov Exponents from a Time Series. Physica
Rittenour TM, Brigham-Grette J, Mann ME (2000) EIndi™ D 16: 285-317 DOI 10.1016/0167-2789(85)90011-9

Climate Teleconnections in New England During the Late Xie P, Arkin PA (1997) Global Precipitation: A 17-year

Pleistocene. Science 288: 1039-1042 monthly analysis based on gauge observations, satellite es-

Ropelewski CF, Halpert MS (1987) Global and Regional timates, and numerical model outputs. B Am Meteorol Soc
Scale Precipitation Patterns Associated with the El 78:2539-2558
Nifo/ Southern Oscillation. Mon Weather Rev 115: 1606—Zbilut JP, Giuliani A, Webber Jr., CL (1998) Detecting deter-
162 ministic signals in exceptionally noisy environments using
Saltzman B (1990) Three basic problems of paleoclimate cross-recurrence quantification. Phys Lett A 246: 122-128
modeling: a personal perspective and review. Clim Dynam DOI 10.1016/S0375-9601(98)00457-5
5:67-78 Zhou J, Lau K-M (1998) Does a monsoon climate exist over
Sandweiss DH, Maasch KA, Burger RL, Richardsonlll JB, South America? J Climate 11: 1020-1040
Rollins HB, Clement A (2001) Variation in Holocene
El Nifho frequencies: Climate records and cultural conse-
guences in ancient Peru. Geology 29: 603-606
Schlittgen R, Streitberg BHJ (1999) Zeitreihenanalyse. Old-
enbourg, Minchen, Wien
Strecker MR, Marret R (1999) Kinematic evolution of fault
ramps and its role in development of landslides and lakes in
the northwestern Argentine Andes. Geology 27: 307-310
Takens F (1981) Detecting Strange Attractors in Turbulence.
Vol 898 of Lecture Notes in Mathematics. Springer, Berlin,
pp 366-381
Trauth MH, Alonso RA, Haselton K, Hermanns R, Strecker
MR (2000) Climate change and mass movements in the
northwest Argentine Andes. Earth Planet Sc Lett 179: 243—
256 DOI 10.1016/S0012-821X(00)00127-8
Trauth MH, Bookhagen B, Mueller AB, Strecker MR (2003)
Late Pleistocene Climate Change and Erosion in the Santa
Maria basin, NW Argentina. J Sediment Res 73
Trauth MH, Strecker MR (1999) Formation of landslide-
dammed lakes during a wet period between 40,000
and 25,000 yr B.P. in northwestern Argentina. Palaeo-
geogr Palaeoclimatol Palaeoecol 153: 277-287 DOI
10.1016/S0031-0182(99)00078-4
Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chap-
pell J, Ellam RM, Lea DW, Lough JM, Shimmield GB
(2001) Variability in the El Niito Southern Oscillation
Through a Glacial-Interglacial Cycle. Science 291: 1511—
1517
Turcq B, Pressinotti MMN, Martin L (1997) Paleohydrology
and Paleoclimate of the Past 33,000 Years at the Tamadu’






Appendix E

Cross Recurrence Plot Based Synchronization of Time Se-
ries
MARWAN, N., THIEL, M., NOWACZYK, N. R., Cross Recurrence Plot Based

Synchronization of Time Series. Nonlinear Processes in Geophysics 9 (3/4),
2002a, 325-331.






Nonlinear Processes in Geophysics (2002) 9: 325-331 .
Nonlinear Processes

in Geophysics
©European Geophysical Society 2002

Cross recurrence plot based synchronization of time series

N. Marwan?, M. Thiel%, and N. R. NowaczyKk

Linstitute of Physics, University of Potsdam, Germany
2GeoForschungs-Zentrum Potsdam, Germany

Received: 3 September 2001 — Accepted: 25 October 2001

Abstract. The method of recurrence plots is extended to thecross recurrence plots (CRP), we have found an interesting
cross recurrence plots (CRP) which, among others, enablefeature. Besides the possibility of application of the recur-
the study of synchronization or time differences in two time rence quantification analysis (RQA) of Webber and Zbilut
series. This is emphasized in a distorted main diagonal iron CRPs (1994), there is a more fundamental relation be-
the cross recurrence plot, the line of synchronization (LOS).tween the structures in the CRP and the considered systems.
A non-parametrical fit of this LOS can be used to rescaleThis feature can be used for synchronization of data sets. Al-
the time axis of the two data series (whereby one of them ighough the first steps of this method are similar to the se-
compressed or stretched) so that they are synchronized. Aquence slotting method, their roots are different.

application of this method to geophysical sediment core data First we give an introduction to CRPs. Then we explain
illustrates its suitability for real data. The rock magnetic datathe relationship between the structures in the CRP and the
of two different sediment cores from the Makarov Basin cansystems and illustrate this with a simple model. Finally, we
be adjusted to each other by using this method, so that thegpply the CRP to geophysical data in order to synchronize
are comparable. various profiles and to show their practical availability. Since
we focus on the synchronization feature of the CRP, we will
not give a comparison between the different alignment meth-
ods.

1 Introduction

The adjustment of data sets with various time scales occur@ The Recurrence Plot

on many occasions, e.g. data preparation of tree rings or geo-

physical profiles. In geology, often a large set of geophysicalRecurrence plots (RP) were firstly introduced by Eckmann
data series is taken at various locations (e.g. sediment coresgt al. (1987) in order to visualize time dependent behaviour
That is why these data series have a different length and timef orbits x; in phase space. An RP represents the recur-
scale. Before any time series analysis can be started, the datgnce of the phase space trajectory to a state. The recurrence
series have to be synchronized to the same time scale. Us@f states is a fundamental property of deterministic dynami-
ally, this is done visually by comparing and correlating eachcal systems (Argyris et al., 1994; Casdagli, 1997; Kantz and
maximum and minimum in both data sets by hand (wiggle Schreiber, 1997). The main step in the visualization is the
matching), which includes the human factor of subjective-calculation of thev x N-matrix

ness and is a lengthy process. An automatic and objectiv ) ) .

method for verification should be very welcome. Rij=0(—lxi—xl). ij=1..N, @

In the last decades some techniques for this kind of correWhereg is a predefined cutoff distanck; || is the norm (e.g.
lation and adjustment were suggested. They span graphiche Euclidean norm) an@ (x) is the Heaviside function. The
methods (Prell et al., 1986), inverse algorithms, e.g. using/aluesoneandzeroin this matrix can be simply visualized
Fourier series (Martinson et al., 1982) and algorithms basedy the colours black and white. Depending on the kind of
on similarity of data, e.g. sequence slotting (Thompson anc@pPplication,e can be a fixed value or it can be changed for
Clark, 1989). eachi in such a way that in the ball with the radies pre-

However, we focus on a method based on nonlinear timedefined amount of neighbours occurs. The latter will provide
series analysis. During our investigations of the method szgonstant density of recurrence points in each column of the

Correspondence td\. Marwan The recurrence plot exhibits characteristic patterns for typ-
(marwan@agnld.uni-potsdam.de) ical dynamical behaviour (Eckmann et al., 1987; Webber Jr.
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and Zbilut, 1994): A collection of single recurrence points,
homogeneously and irregularly distributed over the whole
plot, reveals a mainly stochastic process. Longer paralle
diagonals, formed by recurrence points and with the same
distance between the diagonals, are caused by periodic pr¢
cesses. A paling of the RP away from the main diagonal 4
to the corners reveals a drift in the amplitude of the sys- _
tem. Vertical and horizontal white bands in the RP result =
from states which occur rarely or represent extremes. Ex-2
tended horizontal and vertical black lines or areas occur if i~
state does not change for some time, e.g. laminar states. A
these structures were formed by using the property of recur
rence of states. It should be pointed out that the states ar
only the “same” and recur in the sense of the vicinity, which

is determined by the distanee RPs and their quantitative
analysis (RQA) became better known in the last decade (e.c
Casdagli, 1997). Their applications to a wide field of mis-
cellaneous research show their suitability in the analysis of Time in f
short and non-stationary data.

Fig. 1. Cross recurrence plots of sine functiohg) = sin(¢?) and
g(t) = sin(pt+asin(yt)), wherea = 0 for the black CRR; = 0.5
3 The Cross Recurrence Plot for the green CRP and = 1 for the red CRP. The variation in the
time domain leads to a deforming of the synchronization line.
Analogous to Zbilut et al. (1998), we have expanded the

method of recurrence plots (RP) to the methodifss re-
currence plots In contrast to the conventional RP, two time |ytions. All these factors require a method of synchroniza-
series are simultaneously embedded in the same phase spaggn.

The test for closeness of each point of the first trajeckgry
(i = 1...N) with each point of the second trajectopy
(j=1...M)resultsinaN x M array

A CRP of two corresponding time series will not contain
a main diagonal. But, if the sets of data are similar, e.g. only
rescaled, a more or less continuous line in the CRP that is like

a distorted main diagonal can occur. This line contains infor-

CRi.j = ®(8 i = yj”)' @ mation on the resca?ing. We give an illustrative example. A
The visualization of this is called theoss recurrence plot ~ CRP of a sine function with itself (i.e. this is the RP) contains
The definition of the closeness between both trajectories ca@ main diagonal (black CRP in Fig. 1). Hence, the CRPs in
be varied as described above. Varyingnay be useful to  the Fig. 1 are computed with embeddings of dimension one;
handle systems with different amplitudes. further diagonal lines from the upper left to the lower right

The CRP compares the considered systems and allows (#ccur. These lines typify the similarity of the phase space
to benchmark the similarity of states. In this paper, we fo-trajectories in positive and negative time direction.
cus on the bowedrain diagondl in the CRP, because it is Now we rescale the time axis of the second sine function
related to the frequencies and phases of the systems consith the following way
ered.

sin(pt) —> sin(pt + a sin(y 1)) (3)

4 The line of synchronization in the CRP We will henceforth use the notion rescaling only in the

Regarding the conventional RP, Eq. (1), one always finds 4nention of the rescal?ng of_the j[ime scale. The rescaling of
main diagonal in the plot because tfigi)-states are identi- _the second sine function, W!th d_|fferent parameteeesults
cal. The RP can be considered as a special case of the CRP 2 deformation of the main diagonal (green and red CRP

Eq. (2), which usually does not have a main diagonal as thé" F|gi.1). Tﬁ,eﬁ'smrte,ﬁ Imedcgntalgs the mformak?on on t?}e
(i.i)-states are not identical. rescaling which we will need in order to re-synchronize the

In data analysis one is often faced with time series that{_wo time series. Therefore, we call this distorted diagonal the

are measured on varying time scales. These could be set$'® of synchro.nlzatmn (LOS) ] )

from borehole or core data in geophysics or tree rings in N the following, we present a toy function to explain the
dendrochronology. Sediment cores might have undergon@rocedu_re- If we con_S|der a one dlmen5|onal case without
a number of coring disturbances such as compression ogmbedding, the CRP is computed with

stretching. Moreover, cores from different sites with differ-

ing sedimentation rates would have different temporal reso-CR(#1, 1) = @(e —If(rr) — g@)ll ) 4)
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in Fig. 2. This has the expected parabolic shape of the squared
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coherence in the time domain. In red the square function.
10 20 30 40 50 60 With g(-) = f() the functionsf(-) andg(-) are the same af-
Time in system f ter the normalization. Then our method can be applied with-
. . . . out any further modification.
Fig. 2. Cross recurrence plots of two sine function§) = sin(¢1) In some special cases Eq. (6) can be resolved with respect

and g(r) = sin(y2)) which is the basis of the determination of to 11. Such a case is a system of two sine functions with
the rescaling function between both data series. The embedding Pifferent frequencies

rameters were dimension = 2, delayt = n/2 and a varying
thresholde, in such a way that the CRP contains a constant recur- £ () = sin(e - t + «) 9)

rence density of 20%. 2(t) = Sin(Y - £ + B) (10)

If we sete = 0 to simplify the condition, Eq. (4) gives a Using Eq. (5) and Eg. (6) we find

recurrence point if sin(pt1 +a) —sin(yt, + ) =0 (11)
f(n) = g(2). () and one explicit solution of this equation is

In general, this is an implicit condition that links the variable

1 to 2. Considering physical examples of above, it can be= 1 = ¢ (1) = <£t1 + y) (12)
assumed that the time series are essentially the same — this v

means thaf’ = g —up to a rescaling function of time. Sowe with y = (« — B)/v. In this special case the slope of the

can state that main line in a cross recurrence plot represents the frequency

f(t) = f( P (tl)). (6) ratio_ and the d_istance betwee_n the axes origin a_nd the _inter-

section of the line of synchronization with the ordinate gives

If the functions f(-) and g(-) are not identical, our method e phase difference. The function = #(r1) (Eq. 6) is a

is, in general, not capable of deciding if the difference in yransfer or rescaling function which allows us to rescale the

the time series is due to different dynamig&{ # g(-)) o second system to the first system. If the rescaling function is

if it is due to simple rescaling. So the assumption that thepgt linear the LOS will also be curved.

dynamics are alike up to a rescaling in time is essential, even gy the application, one has to determine the LOS — usu-

though, for some cases whefe# g, it can be applied inthe 51y non-parametrically — and then rescale one of the time se-

same way. If we consider the functiofi¢) = a - f() +b  ries. In the Appendix we describe a simple algorithm for es-

andg(-) = g(-), wheref(-) # g(-) are the observations and {imating the LOS. Its determination will be better for higher

f() = g() are the states, normalization with respect to theempeddings because the vertical and cross-diagonal struc-

mean and the standard deviation allows us to use our methogyres will vanish. Note that the embedding of the time series

FO=a-FO +b— F() = FC) = (1) ) involves difficulties. The Takens Embedding Theorem holds
o (f() for closed, deterministic systems without noise only. If noise

B g() — (g() is present, one needs its realization to find a reasonable em-

§0) = To () (8) bedding. For stochastic time series it does not make sense
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Fig. 5. ARM data of the boreholes PS 2178-3 GPC and PS 2180—
2 GPC in the Central Arctic Ocean before adjustment.

Fig. 4. Reference data series (upper panel) and rescaled data series

before (red) and after (black) using the rescaling function of Fig. 3 . . ) )
(lower panel). can be avoided by using a more complex algorithm for esti-

mating the LOS.

to consider a phase space and so embedding is, in general, o
not justified here either (Romano, to be published; Takens® Application to real data
1981). . . . .

The choice of a special embedding lag could be CorrectIn order to continue 'Fhe .lllustratlon of the working of our
for one section of the data but incorrect for another (for anmethod we haye applied it to real data from geology.
example see below). This can be the case if the data is non- In the following, we compare the method of cross recur-

stationary. Furthermore, the choice of method for computingre,nmla p'°‘tmr?t°h"?9t W|thche c;nvizntmTal geth(k)‘d qf VI"ZU?'
the CRP and the threshaddwill influence the quality of the Wwiggie matching (interactive adjustment). eophysical data
estimated LOS. of two sediment cores from the Makarov Basin, central Arc-

The next sections will be dedicated to application. tic Ocean, PS 2178T3 and PS 2180-2, were analysed. The
task should be to adjust the data of the PS 2178-3 data (data

lengthN = 436) to the scale of the PS 2180-2 (data length

N = 251) in order to get a depth-depth-function which al-

lows us to synchronize both data sets (Fig. 5).

First, we consider two sine functiong,(r) = sin(¢r) and We have constrgcted the phase space \{v.ith six normalized

¢(1) = sin(y2), where the time scale of the second sine Parameters, low field magnetic susceptibiligy £), anhys-

differs from the first by a quadratic term and the frequency {€T€lic remanent magnetization R M), ratio of anhysteretic

¥ = 0.01¢. Sediment parameters are related to such kindSUSCePtibility tok s (karum/kLr), relative palaeointensity

of functions because gravity pressure increases nonlineari{?”/4), median destructive field oA RM (MDFry) and

with the depth. It can be assumed that both data series comfg¢lination (INC). A comprehensive discussion of the data

from the same process and were subjected to different delS 9Iven in Nowaczyk et al. (2001). The embedding was

posital compressions (e.g. a squared or exponential increaS®mPined with the time-delayed method according to Tak-

ing of the compression). Their CRP contains a bowed LOSENS (1981) in qrder to increase further the dimension of the

(Fig. 2). We have used the embedding parameters dimensioRnase space with the following rule: If we havparameters

m = 2, delayr = 7/2 and a varying thresholg so that the % the embe_ddlng_wnh dimension and delayr will result

CRP contains a constant recurrence density of 20%. Assunil! & (7 - n)-dimensional phase space:

ing that the time scale @f is not the correct scale, we denote

that scale by”. In order to determine the non-parametrical

LOS, we have implemented the algorithm described in the

5 Application to a simple example

x(1) = (a1(0), ..., an(0),
a1(t+1),...,a,(t + 1),

Appendix. Although this algorithm is still not mature, we ob- ai(t +27),...,an(t + 21), . ..

tained reliable results (Fig. 3). The resulting rescaling func- ar(t + (m — D), ..., ay(t + (m — D) (13)
tion has the expected squared shape ¢(t”) = 0.011"2

(red curve in Fig. 3). Substituting the time scaltein the For our investigation we have used a dimension= 3
second data serigg:”) by this rescaling function = ¢ (¢”), and a delayr = 1, which finally led to a phase space of

we get a set of synchronized dafté&) andg(r) with the non-  dimension 18 (3x 6). The recurrence criterion was= 5%
parametric rescaling function= ¢ (") (Fig. 4). The syn- nearest neighbours.

chronized data series are approximately the same. The causeThe resulting CRP shows a clear LOS and some cluster-
of some differences is the meandering of the LOS which it-ing of black patches (Fig. 6). The latter occurs due to the
self is caused by partial weak embedding. Nevertheless, thiplateaux in the data. The next step is to fit a non-parametric
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Fig. 6. Cross recurrence plot based on six normalized sed-Fig. 7. Depth-depth-curves. In black, the curve gained with the
iment parameters and an additional embedding dimension OTCRP; in red the manually matching result. The green curve shows
m=3(t =1,¢ =0.05). the deviation between both results.

function (the depth-depth-curve) to the LOS in the CRP (red . - . .
curve in Fig. 6). With this function we are able to adjust the or compression .Of one of these S|m|lar'trajector|e.s causes
data of the PS 21783 core to the scale of PS 2180-2 (Fig. 8f distortion of this diagonal structure (Fig. 1). This effect

The determination of the depth-depth-function with the s used to look Into the synchromzat_lon between both sys-
. . . L tems. Synchronized systems have diagonal structures along
conventional method of visual wiggle matching is based on

) ) : .and in the direction of the main diagonal in the CRP. Inter-
interactive and parallel searching for the same structures ini” . . )

: ) ruptions of these structures with gaps are possible because
the different parameters of both data sets. If the adjustment L . .
: ) of variations in the amplitudes of both systems. However,
does not work in a section of the one parameter, one can use

another parameter for this section which allows the multi-2 loss of synchronization is viewable by the distortion of
P this structures along the main diagonal (LOS). Fitting a non-

variate adjustment of the data sets. The recognition of the . . :
. . arametric function to the LOS allows us to re-synchronize
same structures in the data sets requires a degree of expefl- _ . :
adjust both systems on the same time scale. Although

i : r
ence. However, human eyes are usually better in the Vlsuat?his method is based on principles from deterministic dynam-

2fhsrissment of complex structures than a computational alg?és, no assumptions about the underlying systems have to be

made in order for the method to work.

Our depth-depth-curve differs slightly from the curve ) i . i
The first example shows the obvious relationship between

which was gained by the visual wiggle matching (Fig. 7). ) . - I g
However, despite our (still) weak algorithm used to fit the the LOS and the time domains of the considered time series.

non-parametric adjustment function to the LOS, we obtained! "€ increasing frequency squared of the second harmonic
a good result of adjusted data series. If they are well adjustedUnction causes a parabolic LOS shape in the CRP (Fig. 2).
the correlation coefficient between the parameters of the adE|naIIy, with this LOS we are able to rescale the second func-
justed data and the reference data should not vary so mucf{on to the scale of the first harmonic function (Fig. 4). Some
The correlation coefficients between the reference and agdifferences in the amplitude of the result are caused by the
justed data series is abou?0 — 080, where the correlation 2/gorithm used in order to extract the LOS from the CRP.
coefficients of the interactive rescaled data varies frort0  HOwever, our concem is to focus on the distorted main diag-
— 0.87 (Table 1). Thex? measure of the correlation coef- onal and its relationship with the time domains.
ficients emphasizes more variation for the wiggle matching The second example deals with real geological data and al-
than for the CRP rescaling. lows a comparison with the result of the conventional method
of visual wiggle matching. The visual comparison of the ad-
justed data shows a good concordance with the reference and
7 Discussion the wiggle matched data (Fig. 8 and 9). The depth-depth-
function differs up to 20 centimeters from the depth-depth-
Cross recurrence plots (CRP) reveal similarities in the statesunction of the wiggle matching. The correlation coefficients
of the two systems. A similar trajectory evolution gives a between the CRP adjusted data and the reference data varies
diagonal structure in the CRP. An additional time dilatation less than the correlation coefficients of the wiggle matching.



330 N. Marwan et al.: Cross recurrence plot based synchronization of time series

~
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Table 1. Correlation coefficient®; » between adjusted data and
reference data and th@'[r2 deviation. The correlation of the inter-
active adjusted data varies more than the automatic adjusted dat
The data length i& = 170 (wiggle matching) and&/ = 250 (CRP
matching). The difference between both correlation coefficients
andp» is significant at a 99% significance level when the test mea-

jjustment
N
3
8

150

ARM of Core PS 2178-3

after interactive adj
e
)
S

sure? is greater thang g1 = 2.576 I

Parameter o1, wiggle matching o5, CRP matching 2 U /““\A ﬁ‘ﬂ‘ f | ‘w 150 Qf
AT Y| L etV = Y e S5

ARM 0.8667 0.7846  6.032 ! \MM e M T e
MDF sgu 0.8566 0.7902 4.791 ek Y
KLF 0.7335 0.7826  2.661 °
KARM /KLF 0.8141 0.8049 0.614
PJA 0.7142 0.6995 0.675
INC 0.7627 0.7966 1.990

ARM of Core PS 2180-2
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Fig. 8. ARM data after adjustment by wiggle matching (top) and by
However, the correlation coefficients for the CRP adjustedautomatic adjustment using the LOS from Fig. 6. The bottom figure
data are smaller than these for the wiggle matched data. AlShows the reference data.
though their correlation is better, it seems that the interactive
method _does noF produce a balanced adjusting vyher_eas thf? Conclusion
automatic matching looks for a better balanced adjusting.

These two examples exhibit the ability to work with The cross recurrence plot (CRP) can contain information
smooth and non-smooth data whereby the result will be petdbout the synchronization of data series. This is revealed
ter for smooth data. Small fluctuations in the non-smoothPY the distorted main diagonal which is calléde of syn-
data can be handled by the LOS searching algorithm. ThereSronization (LOS)After isolating this LOS from the CRP
fore, smoothing strategies, like smoothing or parametrical fit°n€ 0btains a non-parametric rescaling function. With this
of the LOS, are not necessary. The latter would damp oné_unctlon one can_synchromze the time series. The underly-
advantage of this method, that the LOS is yielded as a nonld more-dimensional phase space allows us to include more
parametrical function. A future task will be the optimization than one parameter in t.h's synchromzaﬂon method as it usu-
of the LOS searching algorithm in order to get a clear LOS@lly appears in geological applications, e.g. core synchro-
even if the data are non-smooth. Further, the influence oftization. The comparison of CRP adjusted geophysical core
dynamical noise to the result will be studied. Probably, thisdata with conventional visual matching shows an acceptable

problem may be bypassed by a suitable LOS searching a|gd_eliability level of the new method which can be further im-
rithm too. proved by a better method for estimating the LOS. The ad-

vantage is the automatic, objective and multivariate adjust-
Our method has conspicuous similarities with the methodment. Finally, this method of CRPs can open a wide range of
of sequence slotting described by Thompson and Clarkapplications as scale adjustment, phase synchronization and

(1989). The first step in their method is the calculation of pattern recognition, for instance in geology, molecular biol-
a distance matrix, similar to our Eq. (2), which allows the ogy and ecology.

use of multivariate data sets. Thompson and Clark (1989)

referred to the distance measure as dissimilarity; this is used

to determine the alignment function in such a way that theAppendix: An algorithm to fit the LOS

sum of the dissimilarities along a path in the distance ma-

trix is minimized. This approach is based on dynamic pro-!n order to implement a recognition of the LOS we have used
gramming methods which were mainly developed for speecthe following simple two-step algorithm. Denote all recur-
pattern recognition in the 70's (e.g. Sakoe and Chiba, 1978)fénce points by, ;; (&, 8 = 1,2,...) and the recurrence
In contrast, RPs were developed to visualize the phase spagwints lying on the LOS by, j, (¢, 8 = 1,2,...). Be-
behaviour of dynamical systems. Therefore, a threshold wa$ore the common algorithm starts, find the recurrence point
introduced to make recurrent states visible. Involvement ofri,.j, nNext to the axes origin. In the first step, the next re-
a fixed amount of nearest neighbours in phase space and tiéirrence point;; ;., after a previous determined recurrence
possibility to increase the embedding dimensions distinguistpointr;, j,, is to be determined. This is carried out by a step-
this approach from the sequence slotting method. wise increasing of a squaréd x w) sub-matrix where the
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| ., 140 repeated until the end of the RP is reached.
P A e N\MW 1 We know that this algorithm is merely one of many possi-
1 ’ bilities. The following criteria should be met in order to ob-

tain a good LOS. The number of targeted recurrence points
by the LOSN1 should converge to a maximum and the num-

ber of gaps in the LO%Vp should converge to a minimum.
) ¥ An analysis with various estimated LOS confirms this re-
¥ 300 “ | ] quirement. The correlation between two LOS-synchronized
data series arises witki; and with I/ Ng (the correlation co-
efficient correlates most strongly with the rafia/ No).

The algorithm for computation of the CRP and recog-
nition of the LOS are available as Matlab programmes on
http://www.agnld.uni-potsdam.de/~marwan.
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